Notes
![]() ![]() Notes - notes.io |
It can be expected that advanced 3D printing will significantly promote future evolution of solid-state EESDs.Investigation of the mechanism of the water oxidation reaction for hematite photoanodes has been one of the most persistently pursued topics in the course of understanding photoelectrochemical water splitting by transition metal oxides. Unfortunately, existing experimental techniques often require over-simplified models and theories that assume only one reaction path. In this work, however, it is proposed that water oxidation on hematite can proceed via mixed reaction paths according to spectroelectrochemical results without a priori assumptions. The true absorption signals of surface states responsible for water oxidation are isolated from subsidiary signals for undoped and Ti-doped hematite and contrasted with those of inactive species. The evolution of absorption signals as a function of applied potential and illumination intensity highlights the non-negligible contribution of direct hole transfer, especially for highly doped hematite.Cisplatin has been used as standard regimen for hepatocellular carcinoma (HCC), but its therapeutic efficacy is greatly limited by the drug resistance. Cisplatin alone cannot achieve an ideal therapeutic outcome. Herein, a dual threat hybrid artemisinin platinum (ArtePt) is synthesized to combine chemodynamic therapy (CDT) with chemotherapy. On the one hand, artesunate can react with intracellular ferrous ion to generate reactive oxygen species (ROS) via Fenton reaction for CDT. On the other hand, cisplatin can target DNA for chemotherapy. However, GSH in cancer cells can effectively consume free radicals and detoxify cisplatin simultaneously, which compromised the efficacy of CDT and chemotherapy. Hence, an amphiphilic polymer with an iodine atom in the side chain is designed and encapsulated ArtePt to form NP(ArtePt). This iodine containing polymer NP(ArtePt) can effectively deplete intracellular GSH via an Iodo-Click reaction, thereby enhancing the effect of CDT as well as chemotherapy. Thereafter, a patient-derived xenograft model of hepatic carcinoma (PDXHCC ) is established to evaluate the therapeutic effect of NP(ArtePt), and a significant antitumor effect is achieved with NP(ArtePt). Overall, this study provides an effective strategy to combine CDT with chemotherapy to enhance the efficacy of cisplatin via Iodo-Click reaction, opening a new avenue for the cancer treatment.Scanning Probe Microscopy (SPM) based techniques probe material properties over microscale regions with nanoscale resolution, ultimately resulting in investigation of mesoscale functionalities. Among SPM techniques, piezoresponse force microscopy (PFM) is a highly effective tool in exploring polarization switching in ferroelectric materials. However, its signal is also sensitive to sample-dependent electrostatic and chemo-electromechanical changes. Literature reports have often concentrated on the evaluation of the Off-field piezoresponse, compared to On-field piezoresponse, based on the latter's increased sensitivity to non-ferroelectric contributions. Using machine learning approaches incorporating both Off- and On-field piezoresponse response as well as Off-field resonance frequency to maximize information, switching piezoresponse in a defect-rich Pb(Zr,Ti)O3 thin film is investigated. As expected, one major contributor to the piezoresponse is mostly ferroelectric, coupled with electrostatic phenomena during On-field measurements. A second component is electrostatic in nature, while a third component is likely due to a superposition of multiple non-ferroelectric processes. The proposed approach will enable deeper understanding of switching phenomena in weakly ferroelectric samples and materials with large chemo-electromechanical response.The exploration of memtransistors as a combination of a memristor and a transistor has recently attracted intensive attention because it offers a promising candidate for next-generation multilevel nonvolatile memories and synaptic devices. However, the present state-of-the-art memtransistors, which are based on a single material, such as MoS2 or perovskite, exhibit a relatively low switching ratio, require extremely high electric fields to modulate bistable resistance states and do not perform multifunctional operations. Here, the realization of an electrically and optically controllable p-n junction memtransistor using an Al2 O3 encapsulated 2D Te/ReS2 van der Waals heterostructure is reported. find more The hybrid memtransistor shows a reversible bipolar resistance switching behavior between a low resistance state and a high resistance state with a high switching ratio up to 106 at a low operating voltage ( less then 10 V), high cycling endurance, and long retention time. Moreover, multiple resistance states are achieved by applying different bias voltages, gate voltages, or light powers. In addition, logical operations, including the inverter and AND/OR gates, and synaptic activities are performed by controlling the optical and electrical inputs. The work offers a novel strategy for the reliable fabrication of p-n junction memtransistors for multifunctional devices and neuromorphic applications.Stretchable organic field-effect transistors (OFETs) are one of the essential building blocks for next-generation wearable electronics due to the high stretchability of OFET well matching with the large deformation of human skin. In recent years, some significant progress of stretchable OFETs have already been made via the strategies of stretchable molecular design and geometry engineering. However, the main opportunity and challenge of stretchable OFETs is still to simultaneously improve their stretchability and mobility. This review covers the recent advances in the research of stretchable OFETs with high mobility. First, the core stretchable materials are summarized, including organic semiconductors, electrodes, dielectrics, and substrates. Second, the materials and healing mechanism of self-healing OFET are summarized in detail. Subsequently, their different configurations and the potential applications are summarized. Finally, an outlook of future research directions and challenges in this area is presented.Thermal management plays an important role in miniaturized and integrated nanoelectronic devices, where finding ways to enable efficient heat-dissipation can be critical. 2D materials, especially graphene and hexagonal boron nitride (h-BN), are generally regarded as ideal materials for thermal management due to their high inherent thermal conductivity. In this paper, a new method is reported, which can be used to characterize thermal transport in 2D materials. The separation of pumping from detection can obtain the temperature at different distances from the heat source, which makes it possible to study the heat distribution of 2D materials. Using this method, the thermal conductivity of graphene and molybdenum disulfide is measured, and the thermal diffusion for different shapes of graphene is explored. It is found that thermal transport in graphene changes when the surrounding environment changes. In addition, thermal transport is restricted at the boundary. These processes are accurately simulated using the finite element method, and the simulated results agree well with the experiment. Furthermore, by depositing a layer of h-BN on graphene, the heat-dissipation characteristics of graphene become tunable. This study introduces and describes a new method to investigate and optimize thermal management in 2D materials.Patterning of silver nanowires (AgNWs) used in fabricating flexible and transparent electrodes (FTEs) is essential for constructing a variety of optoelectronic devices. However, patterning AgNW electrodes using a simple, inexpensive, high-resolution, designable, and scalable process remains a challenge. Therefore, herein a novel solvent-free photolithographic technique using a UV-curable pressure sensitive adhesive (PSA) film for patterning AgNWs is introduced. The UV-curable PSA film can be selectively patterned by photopolymerization under UV exposure through a photomask. The AgNWs embedded in the non-photocured adhesive areas of the film are firmly held by a crosslinked network of photocurable resin when the patterned film is attached to the AgNW-coated substrate and additionally irradiated by UV light. After peeling off the film, the positive pattern of AgNW electrodes remains on the substrate, while the negative pattern is transferred to the film. This solvent-free photolithographic technique, which does not use toxic solvents, provides superior pattern features, such as fine line widths and spacings, sharp line edges, and low roughness. Therefore, the developed technique could be successfully applied in the development of flexible and transparent optoelectronic devices, such as a self-cleaning electro-wetting-on-dielectric (EWOD) devices, transparent heaters, and FTEs.MXene-based hydrogels have received significant attention due to several promising properties that distinguish them from conventional hydrogels. In this study, it is shown that both strain and pH level can be exploited to tune the electronic and ionic transport in MXene-based hydrogel (M-hydrogel), which consists of MXene (Ti3 C2 Tx )-polyacrylic acid/polyvinyl alcohol hydrogel. In particular, the strain applied to the M-hydrogel changes MXene sheet orientation which leads to modulation of ionic transport within the M-hydrogel, due to strain-induced orientation of the surface charge-guided ionic pathway. Simultaneously, the reorientation of MXene sheets under the axial strain increases the electronic resistance of the M-hydrogel due to the loss of the percolative network of conductive MXene sheets during the stretching process. The iontronic characteristics of the M-hydrogel can thus be tuned by strain and pH, which allows using the M-hydrogel as a muscle fatigue sensor during exercise. A fully functional M-hydrogel is developed for real-time measurement of muscle fatigue during exercise and coupled it to a smartphone to provide a portable or wearable digital readout. This concept can be extended to other fields that require accurate analysis of constantly changing physical and chemical conditions, such as physiological changes in the human body.Biocomposite structures are difficult to characterize by bulk approaches due to their morphological complexity and compositional heterogeneity. Therefore, a versatile method is required to assess, for example, the mechanical properties of geometrically simple parts of biocomposites at the relevant length scales. Here, it is demonstrated how a combination of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and micromanipulators can be used to isolate, transfer, and determine the mechanical properties of frustule constituents of diatom Thalassiosira pseudonana (T.p.). Specifically, two parts of the diatom frustule, girdle bands and valves, are separated by FIB milling and manipulated using a sharp tungsten tip without compromising their physical or chemical integrity. In situ mechanical studies on isolated girdle bands combined with Finite Element Method (FEM) simulations, enables the quantitative assessment of the Young's modulus of this biosilica; E = 40.0 GPa. In addition, the mechanical strength of isolated valves could be measured by transferring and mounting them on top of premilled holes in the sample support.
Homepage: https://www.selleckchem.com/products/abt-199.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team