Notes
Notes - notes.io |
Precise, quantitative measurements of the hydration status of skin can yield important insights into dermatological health and skin structure and function, with additional relevance to essential processes of thermoregulation and other features of basic physiology. Existing tools for determining skin water content exploit surrogate electrical assessments performed with bulky, rigid, and expensive instruments that are difficult to use in a repeatable manner. Recent alternatives exploit thermal measurements using soft wireless devices that adhere gently and noninvasively to the surface of the skin, but with limited operating range (∼1 cm) and high sensitivity to subtle environmental fluctuations. This paper introduces a set of ideas and technologies that overcome these drawbacks to enable high-speed, robust, long-range automated measurements of thermal transport properties via a miniaturized, multisensor module controlled by a long-range (∼10 m) Bluetooth Low Energy system on a chip, with a graphical user interface to standard smartphones. Soft contact to the surface of the skin, with almost zero user burden, yields recordings that can be quantitatively connected to hydration levels of both the epidermis and dermis, using computational modeling techniques, with high levels of repeatability and insensitivity to ambient fluctuations in temperature. Systematic studies of polymers in layered configurations similar to those of human skin, of porcine skin with known levels of hydration, and of human subjects with benchmarks against clinical devices validate the measurement approach and associated sensor hardware. The results support capabilities in characterizing skin barrier function, assessing severity of skin diseases, and evaluating cosmetic and medication efficacy, for use in the clinic or in the home.Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge's internal structures of four Elater abruptus specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.Rabies kills ∼60,000 people per year. Annual vaccination of at least 70% of dogs has been shown to eliminate rabies in both human and canine populations. However, delivery of large-scale mass dog vaccination campaigns remains a challenge in many rabies-endemic countries. In sub-Saharan Africa, where the vast majority of dogs are owned, mass vaccination campaigns have typically depended on a combination of static point (SP) and door-to-door (D2D) approaches since SP-only campaigns often fail to achieve 70% vaccination coverage. However, D2D approaches are expensive, labor-intensive, and logistically challenging, raising the need to develop approaches that increase attendance at SPs. Here, we report a real-time, data-driven approach to improve efficiency of an urban dog vaccination campaign. Historically, we vaccinated ∼35,000 dogs in Blantyre city, Malawi, every year over a 20-d period each year using combined fixed SP (FSP) and D2D approaches. To enhance cost effectiveness, we used our historical vaccination dataset to define the barriers to FSP attendance. Guided by these insights, we redesigned our vaccination campaign by increasing the number of FSPs and eliminating the expensive and labor-intensive D2D component. Combined with roaming SPs, whose locations were defined through the real-time analysis of vaccination coverage data, this approach resulted in the vaccination of near-identical numbers of dogs in only 11 d. This approach has the potential to act as a template for successful and sustainable future urban SP-only dog vaccination campaigns.Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.Our understanding of how the obligate intracellular bacterial pathogen Chlamydia trachomatis reprograms the function of infected cells in the upper genital tract is largely based on observations made in cell culture with transformed epithelial cell lines. Here, we describe a primary organoid system derived from endometrial tissue to recapitulate epithelial cell diversity, polarity and ensuing responses to Chlamydia infection. Using high-resolution and time-lapse microscopy, we catalog the infection process in organoids from invasion to egress, including the reorganization of the cytoskeleton and positioning of intracellular organelles. We show this model is amenable to screening C. trachomatis mutants for defects in the fusion of pathogenic vacuoles, the recruitment of intracellular organelles and inhibition of cell death. Moreover, we reconstructed a primary immune cell response by co-culturing infected organoids with neutrophils, and determined that effectors like CPAF (also known as CT858) and TepP (also known as CT875) limit the recruitment of neutrophils to infected organoids. Collectively, our model can be applied to study the cell biology of Chlamydia infections in three-dimensional structures that better reflect the diversity of cell types and polarity encountered by Chlamydia in their animal hosts.Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by Camp) after infection by viable E. coli or stimulation with inactivated E. coli and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form. The active CRAMP was required by WT macrophages for elimination of phagocytosed E. coli, with participation of autophagy-related proteins ATG5, LC3-II and LAMP-1, as well as for aggregation of the bacteria with p62 (also known as SQSTM1). This process was impaired in CRAMP-/- macrophages, resulting in retention of intracellular bacteria and fragmentation of macrophages. These results indicate that CRAMP is a critical component in autophagy-mediated clearance of intracellular E. coli by mouse macrophages.The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.Late endosomes and lysosomes (endolysosomes) receive proteins and cargo from the secretory, endocytic and autophagic pathways. Although these pathways and the degradative processes of endolysosomes are well characterized, less is understood about protein traffic from these organelles. In this study, we demonstrate the direct involvement of the phosphatidylinositol 3-phosphate (PI3P)-binding SNX4 protein in membrane protein recycling from endolysosomes, and show that SNX4 is required for proper autophagic flux. AZ32 solubility dmso We show that SNX4 mediates recycling of the lipid scramblase ATG9A, which drives expansion of nascent autophagosome membranes, from endolysosomes to early endosomes, from where ATG9A is recycled to the trans-Golgi network in a retromer-dependent manner. Upon siRNA-mediated depletion of SNX4 or the retromer component VPS35, we observed accumulation of ATG9A on endolysosomes and early endosomes, respectively. Moreover, starvation-induced autophagosome biogenesis and autophagic flux were inhibited when SNX4 was downregulated.
Homepage: https://www.selleckchem.com/products/az32.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team