Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
torso (bulk movement and variable breathing), head-and-neck (swallowing) and cardiac. Furthermore, it is shown that the noise navigator can detect bulk movement, variable breathing and swallowing on a hybrid 1.5T MRI-linac system. Cardiac activity detection through the noise navigator seems feasible in an MRI-guided radiotherapy setting, but needs further optimization. The noise navigator is a versatile and fast (millisecond temporal resolution) motion detection method independent of MR signal that could serve as an independent verification method to detect the occurrence of motion in synergy with real-time MRI-guided radiotherapy. © 2020 Institute of Physics and Engineering in Medicine.To achieve regeneration of long sections of damaged nerves, restoration methods such as direct suturing or autologous grafting can be inefficient. Solutions involving biohybrid implants, where neural stem cells are grown in vitro on an active support before implantation, have attracted attention. Using such an approach, combined with recent advancements in microfabrication technology, the chemical and physical environment of cells can be tailored in order to control their behaviors. Herein, a neural stem cell polycarbonate fiber scaffold, fabricated by 3D printing and thermal drawing, is presented. The combined effect of surface microstructure and chemical functionalization using poly-ʟ-ornithine (PLO) and double-walled carbon nanotubes (DWCNTs) on the biocompatibility of the scaffold, induced differentiation of the neural stem cells (NSCs) and channeling of the neural cells was investigated. Upon treatment of the fiber scaffold with a suspension of DWCNTs in PLO (0.039 gL-1) and without recombinants a high degree of differentiation of NSCs into neuronal cells was confirmed by using nestin, galactocerebroside (GalC) and doublecortin (Dcx) immunoassays. These findings illuminate the potential use of this biohybrid approach for the realization of future nerve regenerative implants. Creative Commons Attribution license.Niobium pentoxide particles with a complex 3D nanostructure consisting of a spiky structure have been developed as recyclable and recoverable Lewis acid catalysts. The morphology of the niobium pentoxide was successfully controlled from one- to three-dimensional via a bridging-ligand-assisted hydrothermal treatment, without changing the crystal structure. Compared with dispersed one-dimensional niobium pentoxide nanorods with a major-axis length and minor-axis length of 20 nm and 5-8 nm, respectively, the spiky-shaped niobium pentoxide composed of 300 nm spherical cores and nanorods with a minor-axis length of 5 nm maintained its surface nanostructure even after calcination at 400 °C in air. The 400 °C-calcined spiky particles exhibited the highest production rate of 2-[(4-methoxyphenyl)amino]-2-phenylacetonitrile (0.115 mmol m-2) in a Strecker reaction, resulting in a nanoscale and ordered surface structure of spiky particles that simultaneously exhibit high specific reactivity and high structural stability. Acid site analysis and Raman spectroscopy revealed that stable nanorods that grew in the (001) orientation functioned as Lewis acid catalysts and that the origin of the acidity was a flexible Nb-O polyhedral structure in the single-nanoscale ( less then 10 nm) niobium oxide rods. This study proposes that the spiky-shaped niobium pentoxide exhibits sintering resistivity and high activity and has potential applications as a recoverable and recyclable solid acid catalyst. © 2020 IOP Publishing Ltd.Tumor tracking during radiotherapy treatment can improve dose accuracy, conformity and sparing of healthy tissue. Many methods have been introduced to tackle this challenge utilizing multiple imaging modalities, including a template matching based approach using the megavoltage (MV) on-board portal imager demonstrated on 3D conformal treatments. However, the complexity of treatments is evolving with the introduction of VMAT and IMRT, and successful motion management is becoming more important due to a trend towards hypofractionation. We have developed a markerless lung tumor tracking algorithm, utilizing the electronic portal imager (EPID) of the treatment machine. The algorithm has been specifically adapted to track during complex treatment deliveries with gantry and MLC motion. The core of the algorithm is an adaptive template matching method that relies on template stability metrics and local relative orientations to perform multiple feature tracking simultaneously. Only a single image is required to initialize the algorithm and features are automatically added, modified or removed in response to the input images. This algorithm was evaluated against images collected during VMAT arcs of a dynamic thorax phantom. Dynamic phantom images were collected during radiation delivery for multiple lung SBRT breathing traces and an example patient data set. The tracking error was 1.34 mm for the phantom data and 0.68 mm for the patient data. A multi-region, markerless tracking algorithm has been developed, capable of tracking multiple features simultaneously without requiring other a priori information. This novel approach delivers robust target localization during complex treatment delivery. The reported tracking error is similar to previous reports for 3D conformal treatments. © 2020 Institute of Physics and Engineering in Medicine.Modelling of the multi-leaf collimator (MLC) in treatment planning systems (TPS) is crucial for the dose calculation accuracy of intensity-modulated radiation therapy plans. However, no standardised methodology for their configuration exists to date. In this study we present a method that separates the effect of each dosimetric characteristic of the MLC, offering comprehensive equations for the determination of the configuration parameters used in the TPS model. The main advantage of the method is that it only requires prior knowledge of the nominal leaf width and is based on doses measured with a Farmer chamber, which is a very well established and robust methodology. Another significant advantage is the required time, since measuring the tests takes only about 30 minutes per energy. Firstly, we provide a theoretical general formalism in terms of the primary fluence constructed from the transmission map obtained from an MLC model for synchronous and asynchronous sweeping beams. AdipoRon AdipoR agonist Secondly, we apply the formalism to the RayStation TPS as a proof of concept and we derive analytical expressions that allow the determination of the configuration parameters (leaf tip width, tongue-and-groove width, x-position offset and MLC transmission) and describe how they intertwine.
Website: https://www.selleckchem.com/products/AdipoRon.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team