Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
bocagei presented a stronger preference than P. polylepis for vegetated patches and areas downstream from plants, taking advantage of sheltered regions more frequently. P. polylepis weaker search for shelter could be related to species-specific factors and territorial behavior interferences rather than to fish performance relative to flume hydraulic conditions. Despite a weaker response, some P. polylepis individuals used patches downstream from plants more during the second half of the hydropeaking trials. A trade-off between reducing swimming effort and territoriality might explain this response. Results indicate that vegetation can help to counterbalance the impact of hydropeaking on fish while providing river functioning benefits. Evaluating fish sheltering to a wide set of river plants and patch designs on a species-by-species basis would help targeting vegetation-based actions for restoring hydropeaking rivers.Deltas are inherently low-lying structures and thus subject to large threats due to sea level rise, erosion and other coastal processes. The shorelines in many deltas around the world are now retreating and most cases appear to result from a decreasing sediment supply as a consequence of upstream dam construction. We present here results of an investigation of riverine sediment fluxes, coastal retreat, and coastal sediment accumulation in the Chao Phraya River and Delta (Thailand). This deltaic shoreline has one of the highest rates of shoreline retreat in the world. Surprisingly, our results show that in spite of the construction of two large storage dams, one on the Ping River (Bhumibol Dam, 1964) and the other on the Nan River (Sirikit Dam, 1972) that merge to form the Chao Phraya, sediment accumulation in the delta was actually higher over the last several decades than prior to dam construction. The recent higher rates of sediment accumulation, based on 210Pb dating, appear to be the result of increased sediment supply in the lower reaches of the river relating to expansion of aquaculture and other activities in the delta beginning in the 1970s. We also show that mangrove removal, in order to further develop shrimp farming, charcoal production, and other pursuits, was not responsible for most of the shoreline erosion. Rather, subsidence, mainly induced by groundwater withdrawal, together with worldwide sea level rise appears to be the main factor affecting the very rapid shoreline retreat of the Chao Phraya Delta.With the acceleration of urbanization, the production of urban sludge is increasing rapidly. To minimize resource input and waste output, it is crucial to execute analyses of environmental impact and assessments of sustainability on different technical strategies involving sludge disposal based on Life Cycle Assessment (LCA), which is a great potential mean of environmental management adopted internationally in the 21st century. This review aims to compare the environmental sustainability of existing sludge management schemes with a purpose of nutrient recovery and energy saving, respectively, and also to include the substitution benefits of alternative sludge products. Simultaneously, LCA research regarding the emerging sludge management technologies and sludge recycling (cement, adsorbent, bricks) is analyzed. Additionally, the key aspects of the LCA process are worth noting in the context of the current limitations reviewed here. It is worth emphasizing that no technical remediation method can reduce all environmental damage simultaneously, and these schemes are typically more applicable to the assumed local conditions. Future LCA research should pay more attention to the toxic effects of different sludge treatment methods, evaluate the technical ways of adding pretreatment technology to the 'front end' of the sludge treatment process, and further explore how to markedly reduce environmental damage in order to maximize energy and nutrient recovery from the LCA perspective.Aquatic insects link food web dynamics across freshwater-terrestrial boundaries and subsidize terrestrial consumer populations. Contaminants that accumulate in larval aquatic insects and are retained across metamorphosis can increase dietary exposure for riparian insectivores. Hormones inhibitor To better understand potential exposure of terrestrial insectivores to aquatically-derived trace metals, metal concentrations in water and tissues were analyzed from different components of streams and riparian food webs across a large (2-3 orders of magnitude) metal gradient (e.g., Zn, Cu, Cd, Pb) in the Rocky Mountains (USA). Our research indicates that the trace metal concentration gradient present among streams was lost during metamorphosis of aquatic larval insects into terrestrially flying adults, decoupling terrestrial exposures from aquatic concentrations. This pattern was caused by declines in 1) among-stream variation in trace metal concentrations, 2) relationships between metal concentrations in paired water and food web compquatic-terrestrial dietary transfer is unlikely to be an important source of exposure for terrestrial insectivores of adult aquatic insects.With the rapid expansion of maritime traffic, increases in air emissions from shipping have exacerbated numerous environmental issues, including air pollution and climate change. However, the effects of such emissions on marine biogeochemistry remain poorly understood. Here, we collected ship-emitted particles (SEPs) from the stack of a heavy-oil-powered vessel using an onboard emission test system and investigated the impact of SEPs on phytoplankton growth over the northwest Pacific Ocean (NWPO). In SEP microcosm experiments conducted in oceanic zones with different trophic statuses, the phytoplankton response, as indicated by chlorophyll a (Chl a), has been shown to increase with the proportion of SEP-derived nitrogen (N) relative to N stocks (PSN) in baseline seawater, suggesting that SEPs generally promote phytoplankton growth via N fertilisation. Simulations using an air quality model combined with a ship emission inventory further showed that oxidised N (NOx) emissions from shipping contributed ~43% of the atmospheric N deposition flux in the NWPO. Air emissions from shipping (e.g. NOx and sulphur dioxide) also indirectly enhanced the deposition of reduced N that existed in the atmosphere, constituting ~15% of the atmospheric N deposition flux. These results suggest that the impact of airborne ship emissions on atmospheric N deposition is comparable to that of land-based emissions in the NWPO. Based on the ship-induced PSN in surface seawater calculated by modeling results and World Ocean Atlas 2013 nutrient dataset, and the well-established quantitative relationship between Chl a and PSN obtained from microcosm experiments, we found a noticeable change in surface Chl a concentrations due to N deposition derived from marine traffic in the NWPO, particularly in the coastal waters of the Yellow Sea and open oceans. This work attempts to establish a direct link between marine productivity and air emissions from shipping.Mapping of surface soil Hg concentrations, a priority pollutant, at continental scale is important in order to identify hotspots of soil Hg distribution (e.g. mining or industrial pollution) and identify factors that influence soil Hg concentrations (e.g. climate, soil properties, vegetation). Here we present soil Hg concentrations from the LUCAS topsoil (0-20 cm) survey including 21,591 samples from 26 European Union countries (one sample every ~200 km2). Deep Neural Network (DNN) learning models were used to map the European soil Hg distribution. DNN estimated a median Hg concentration of 38.3 μg kg-1 (2.6 to 84.7 μg kg-1) excluding contaminated sites. At continental scale, we found that soil Hg concentrations increased with latitude from south to north and with altitude. A GLMM revealed a correlation (R2 = 0.35) of soil Hg concentrations with vegetation activity, normalized difference vegetation index (NDVI), and soil organic carbon content. This observation corroborates the importance of atmospheric Hg0 uptake by plants and the build-up of the soil Hg pool by litterfall over continental scales. The correlation of Hg concentrations with NDVI was amplified by higher soil organic matter content, known to stabilize Hg in soils through thiol bonds. We find a statistically significant relation between soil Hg levels and coal use in large power plants, proving that emissions from power plants are associated with higher mercury deposition in their proximity. In total 209 hotspots were identified, defined as the top percentile in Hg concentration (>422 μg kg-1). 87 sites (42% of all hotspots) were associated with known mining areas. The sources of the other hotspots could not be identified and may relate to unmined geogenic Hg or industrial pollution. The mapping effort in the framework of LUCAS can serve as a starting point to guide local and regional authorities in identifying Hg contamination hotspots in soils.The deposited 137Cs is one of the long-lived radionuclides, that was released following the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, has been hydrologically transported as particulates in the terrestrial environment of the Fukushima region. The impact of freeze-thaw processes and subsequent runoff affecting the 137Cs flux and concentration in sediment discharge were revealed in bare land erosion plot following the FDNPP accident by detailed monitoring and laser scanner measurement on the soil surface. We found that surface topographic changes due to the frost-heaving during the winter-spring period, and rill formation during the summer. We also found the evident seasonal changes in 137Cs concentration; high during the early spring and gradually decreased thereafter, then surface runoff from the plot frequently occurred during spring and autumn when rainfall was high and reached a maximum in summer. From these results, the higher 137Cs concentration in spring was caused by a mixture of unstable surface sediment following freeze-thaw processes and then transported in the early spring, but erosion amount is not significant because of the less rainfall event. The sediment with a lower 137Cs concentration, which was supplied from the rill erosion and its expansion, was wash-offed during the summer, contributing most of the flux from erosion in bare land in Fukushima region. In case, heavy rainfall occurs in the early spring, caution is required because high concentrations of cesium may flow down into the river.Arsenic (As)-reducing bacteria are able to influence As-speciation and, in this way, change As bio-availability. In consequence, this has an impact on As uptake by plants growing on polluted soil and on the effectiveness of the phytoremediation process. To be able to efficiently utilize these bacteria for As-phytoremediation in the field, a better understanding of the plant-bacterial interactions involved in As-tolerance or toxicity is needed. In this work, seedlings of a clone of Salix atrocinerea derived from a specimen naturally growing on an As-polluted brownfield were grown under gnotobiotic conditions exposed to As, and in the presence or absence of two of its field-associated and in vitro characterized plant growth-promoting (PGP) bacteria. The inoculation with Pantoea sp., induced a moderate reduction of AsV to AsIII in the exposure medium that, together with a coordinated plant response of As uptake, chelation and sequestration, increased As accumulation in roots; which is reflected into a higher phytostabilization.
Website: https://www.selleckchem.com/products/arn-509.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team