NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Calorimetric study pH-responsive obstruct copolymer grafted fat bilayers: rational style and growth and development of liposomes.
It turned out that both photopolymerization rate and hardness of cured coatings were increased significantly with the addition of modifiers; the use of a thiol modifier and change of the photoinitiator concentration allowed to improve the adhesion, hardness, and control of the photo-curing process.Interface problems and the destruction of the continuity of the oxide film in the Al matrix usually reduce the corrosion resistance of the material. In this paper, the corrosion resistance of Al matrix composites (AMCs) was improved by introducing the silicon carbide skeletons (SiC3D) obtained with polymer replica technology. SiC3D/6061Al was fabricated by infiltrating molten 6061Al alloy in the oxidized SiC3D using the low-pressure casting method. The corrosion resistance performances of 6061Al and SiC3D/6061Al in NaCl solution were studied by electrochemical, neutral salt spray corrosion (NSS), and salt leaching (SL) tests. Results show corrosion resistance of SiC3D/6061Al is higher than that of 6061Al alloys by open circuit potential (OCP), potentio-dynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) tests. However, NSS and SL tests show the corrosion resistance of SiC3D/6061Al is lower than that of 6061Al alloy. The reason is a corrosion resistant and anti-oxidation network macrostructure with large interface recombination, few concentrated interfaces, and a small specific area that formed in SiC3D/6061Al. SiC3D cannot damage the continuity of the Al2O3 passivating film, and the network macrostructure greatly improves the corrosion resistance performance.The work presents the synthesis of FeCl3-modified carbonaceous catalysts obtained from waste orange peel and their application in the oxidation of alpha-pinene in solvent-free reaction conditions. The use of waste orange peel as presented here (not described in the literature) is an effective and cheap way of managing this valuable and renewable biomass. FeCl3-modified carbonaceous materials were obtained by a two-stage method in the first stage, activated carbon was obtained, and in the second stage, it was modified by FeCl3 in the presence of H3PO4 (three different molar ratios of these two compounds were used in the studies). The obtained FeCl3-modified carbon materials were subjected to detailed instrumental studies using the methods FT-IR (Fourier-transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), EDXRF (Energy Dispersive X-ray Fluorescence) and XPS (X-ray Photoelectron Spectroscopy), while the textural properties of these materials were also studied, such as the specific surface area and total pore volume. Catalytic tests with the three modified activated carbons showed that the catalyst obtained with the participation of 6 M of FeCl3 and 3 M aqueous solutions of H3PO4 was the most active in the oxidation of alpha-pinene. Further tests (influence of temperature, amount of catalyst, and reaction time) with this catalyst made it possible to determine the most favorable conditions for conducting oxidation on this type of catalyst, and allowed study of the kinetics of this process. The most favorable conditions for the process were temperature of 100 °C, catalyst content of 0.5 wt% and reaction time 120 min (very mild process conditions). The conversion of the organic raw material obtained under these conditions was 40 mol%, and the selectivity of the transformation to alpha-pinene oxide reached the value of 35 mol%. In addition to the epoxy compound, other valuable products, such as verbenone and verbenol, were formed while carrying out the process.This work aimed to test composites (surfactant modified zeolites prepared by treatment of natural zeolites-clinoptilolite (IZ CLI) and/or phillipsite (PHIL75)-rich tuffs with two different amounts of cationic surfactants cetylpyridinium chloride (CPyCl) and Arquad® 2HT-75 (ARQ)) for the adsorption of salicylic acid (SA)-a common contaminant of emerging concern. Adsorption of SA was studied at different initial drug concentrations (in the range of 2-100 mg/L) in water solution. The Langmuir isotherm model showed the highest adsorption was achieved by bilayer composite of IZ CLI and CPyCl-around 11 mg/g. Kinetic runs were performed by using the initial drug concentration of 20 mg/L in the time interval from 0 to 75 min and pseudo-second order had good correlation with experimental data. The influence of the four different temperatures on the SA adsorption was also investigated and thermodynamic parameters suggested that the adsorption drug onto composites is an exothermic and nonspontaneous process, followed by the decrease of randomness at the solid/liquid interface during the adsorption. Zeta potential and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) had been performed for the characterization of composites after adsorption of SA confirming the presence of the drug at composite surfaces.With the increasing traffic loading and changing climatic conditions, there is a need to use novel superior performing pavement materials such as high-modulus asphalt binders and asphalt mixtures to mitigate field distress such as rutting, cracking, etc. This laboratory study was thus conducted to explore and substantiate the usage of Rubber Polymer Composite Modifier (RPCM) for high-modulus asphalt binder modification. The base asphalt binder used in the study comprised A-70# Petroleum asphalt binder with RPCM dosages of 0.25%, 0.30%, 0.35%, 0.40% and 0.45%, separately. The laboratory tests conducted for characterizing the asphalt binder rheological and morphological properties included the dynamic mechanical analysis (DM), temperature-frequency sweep in the dynamic shear rheometer (DSR) device, bending beam rheometer (BBR), and florescence microscopic (FM) imaging. The corresponding test results exhibited satisfactory compatibility and potential for using RPCM as a high-modulus asphalt binder modifier to enhance the base asphalt binder's rheological properties, both with respect to high- and low-temperature performance improvements. For the A-70# Petroleum asphalt binder that was evaluated, the optimum RPCM dosage was found to be 0.30-0.35%. In comparison to styrene-butadiene-styrene (SBS), asphalt binder modification with RPCM exhibited superior high-temperature rutting resistance properties (as measured in terms of the complex modulus and phase angle) and vice versa for the low-temperature cracking properties. Overall, the study beneficially contributes to the literature through provision of a reference datum toward the exploratory usage of RPCM for high-modulus asphalt binder modification and performance enhancements.Chitosan has become increasingly applied in agriculture worldwide, thus entering the soil environment. We hypothesized that chitosan should affect the water stability of soil. Since this problem has not been studied to date, we examined, for the first time, the influence of chitosan on the water stability and wettability of soil aggregates. The aggregates were prepared from four soils with various properties amended with different amounts of two kinds of powdered chitosan, and subjected to 1 and/or 10 wetting-drying cycles. The water stability was measured by monitoring air bubbling after aggregate immersion in water, and the wettability was measured by a water drop penetration test. The biopolymer with a lower molecular mass, lower viscosity, and higher degree of deacetylation was more effective in increasing the water stability of the soil than the biopolymer with a higher molecular mass, higher viscosity, and lower deacetylation degree. After a single wetting-drying cycle, the water stability of the soil aggregates containing chitosan with a higher molecular mass was generally lower than that of the soil; after ten wetting-drying cycles, the water stability increased 1.5 to 20 times depending on the soil. The addition of low-molecular-mass chitosan after a single wetting-drying cycle caused the water stability to become one to two hundred times higher than that of the soil. A trial to find out which soil properties (pH, C and N content, bulk density, porosity, and particle size distribution) are responsible for the effectiveness of chitosan action was not successful, and this will be the objective of further studies.Among the most commonly used materials in the construction of structures in the last two centuries are iron and steel. Clamp joints are a suitable type of joint when it is necessary to rehabilitate or modify a historical steel structure for new uses, reinforcing or modifying it with new beams, without the need to drill or weld on the original structure. The clamps allow beams to be joined with a flange (such as I-beams) without the need for any prior operation on the beams and allow the manufacture of completely removable and reconfigurable structures. Developing and analysing this type of fully removable and reconfigurable structure is necessary. To date, no studies have been carried out on the fatigue behaviour of steel joints by clamps, especially taking into account their main geometric characteristics, such as the size of the clamp levers. In this work, an analytical model is proposed that allows for the analysis of the number of cycles and the fatigue limit of clamp joints as a function of the size of the clamp levers. In addition, various fatigue tests are performed with different clamp sizes. The experimental results are compared with those obtained with the proposed methodology. Finally, the relationships between the lever length and the fatigue behaviour of the clamp joints have been determined. It is concluded that an increase in the size of the front lever is associated to a decrease in the fatigue limit. On the contrary, if the size of the rear lever is increased, the fatigue limit of the joint increases. In general, according to the obtained results, the resistance of the joint can be reduced to approximately one third when it is subjected to fatigue loads.Over the past few decades, nanoparticles of iron oxide Fe3O4 (magnetite) gained significant attention in both basic studies and many practical applications. Their unique properties such as superparamagnetism, low toxicity, synthesis simplicity, high surface area to volume ratio, simple separation methodology by an external magnetic field, and renewability are the reasons for their successful utilisation in environmental remediation, biomedical, and agricultural applications. Moreover, the magnetite surface modification enables the successful binding of various analytes. In this work, we discuss the usage of core-shell nanoparticles and nanocomposites based on Fe3O4 for the modification of the GC electrode surface. Furthermore, this review focuses on the heavy metal ions electrochemical detection using Fe3O4-based nanoparticles-modified electrodes. Moreover, the most frequently used electrochemical methods, such as differential pulse anodic stripping voltammetry and measurement conditions, including deposition potential, deposition time, and electrolyte selection, are discussed.(1) The mineral deposits are the base resources of materials used in building and environmental engineering applications, especially available locally. Two wells of volcanic tuff deposits in the Khmelnytsky region of Ukraine were investigated in this regard. (2) Physical-mechanical, chemical, and mineralogical analyses of the core samples were carried out. (3) The tuff samples were characterized by visible colour, low compressive strength (4.34-11.13 MPa), and high water absorption (30%). The dominant minerals of the upper horizon were chlorite, pyroxene, kaolinite, quartz, hematite, and calcite, while those of the lower horizon included analcime, quartz, hematite, and calcite. QX77 order (4) The studied volcanic tuffs seem to be only partly useful for construction applications, and considering their visible colour, the exterior decoration of engineering objects could be possible. The peculiarity of the minerals of the upper horizon is that their crystals consist of Fe2+. An analysis of existing scientific data made it possible to say that these minerals can be considered as an alternative to expensive metallic iron in reducing the toxicity of chromium, uranium, and halogenated organic compounds.
Homepage: https://www.selleckchem.com/products/qx77.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.