NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Brain system excitatory/inhibitory imbalance is a biomarker pertaining to drug-naive Rolandic epilepsy: Any radiomics method.
We conclude that the STAC3 gene is expressed specifically in skeletal muscle and is a negative regulator of skeletal muscle satellite cell differentiation in chicken. © King Abdulaziz City for Science and Technology 2020.We investigated antibiotic resistance levels among bla NDM -positive (n = 9) and -negative (n = 65) A. baumannii clinical isolates collected in 2010 and 2015 from Alexandria Main University Hospital, Egypt using disc diffusion and minimum inhibitory concentration (MIC) determination. selleckchem Plasmids from bla NDM -positive isolates were transformed into a carbapenem-susceptible A. baumannii (CS-AB) isolate to assess the role of plasmid transfer in mediating carbapenem resistance. Imipenem, meropenem, and ertapenem MIC90 values against bla NDM -positive isolates were 128, > 256, and 256 µg/mL, respectively. Plasmid isolation and polymerase chain reaction revealed that bla NDM was plasmid mediated. The plasmids were electroporated into the cells of a CS-AB isolate at an efficiency of 1.3 × 10-8 to 2.6 × 10-7, transforming them to bla NDM -positive carbapenem-resistant cells with an imipenem MIC increase of 256-fold. In addition to carbapenem resistance, the bla NDM -positive isolates also exhibited higher levels of cephalosporins, tetracycline, aminoglycosides, fluoroquinolones, and colistin resistance than the bla NDM -negative isolates. Acquisition of bla NDM -carrying plasmids dramatically increased imipenem resistance among A. baumannii isolates. Intriguingly, bla NDM -positive isolates also showed a high degree of resistance to antibiotics of different classes. The potential co-existence of different resistance determinants on A. baumannii plasmids and their possible transfer owing to the natural competence of the pathogen are especially alarming. More effective infection control and antibiotic stewardship programs are needed to curb the spread and treat such infections in both hospital and community settings. © King Abdulaziz City for Science and Technology 2020.A monopartite begomovirus associated with betasatellite was identified from Osteospermum fruticosum (Cape Daisy) showing severe yellowing vein net symptoms in Rajasthan, India through molecular characterization. The DNA-A shared the highest nucleotide (96.61%) identity to Chilli leaf curl Ahmedabad virus (KM880103), while the betasatellite depicted the highest sequence similarity (99.28%) to Chilli leaf curl betasatellite (JF706231, 99.28%). Based on the sequence identity with other begomoviruses known to date, they were recognized as Chilli leaf curl virus (CDI, MH355641) and Chilli leaf curl betasatellite (CDB1, MH355642), respectively. Phylogenetic analysis showed that DNA-A (CD1) clustered with ChiLCV Goa (KP235539), whereas the betasatellite (CDB1) clustered with ChiLCB Jodhapur (JF70623). Recombination events were observed among the clades of ChiLCV, showing intragenic recombination in Rep (C1) and coat protein (V1/AV1) regions. To our knowledge, this is the first report of ChiLC begomovirus strain affecting O. fruticosum. © King Abdulaziz City for Science and Technology 2020.Agriculture is the source of food for both humans and animals. With the growing population demands, agricultural production needs to be scaled up where nanotechnology can play a significant role. The use of nanotechnology in agriculture can manage plant disease and growth for better and quality output. Therefore, this review focuses on the use of various nanoparticles for detection of nutrients and contaminants, nanosensors for monitoring the environmental stresses and crop conditions as well as the use of nanotechnology for plant pathogen detection and crop protection. In addition, the delivery of plant growth regulators and agrichemicals like nanopesticides and nanofertilizers to the plants along with the delivery of DNA for targeted genetic engineering and production of genetically modified (GM) crops are discussed briefly. Further, the future concerns regarding the use of nanoparticles and their possible toxicity, impact on the agriculture and ecosystem needs to be assessed along with the assessment of the nanoparticles and GM crops on the environment and human health. © King Abdulaziz City for Science and Technology 2020.l-isoleucine dioxygenase (IDO) is an Fe (II)/α-ketoglutarate (α-KG)-dependent dioxygenase that specifically converts l-isoleucine (l-Ile) to (2S, 3R, 4S)-4-hydroxyisoleucine (4-HIL). 4-HIL is an important drug for the treatment and prevention of type 1 and type 2 diabetes but the yields using current methods are low. In this study, the CRISPR-Cas9 gene editing system was used to knockout sucAB and aceAK gene in the TCA cycle pathway of Escherichia coli (E. coli). For single-gene knockout, the whole process took approximately 7 days. However, the manipulation time was reduced by 2 days for each round of gene modification for multigene editing. Using the genome-edited recombinant strain E. coli BL21(DE3) ΔsucABΔaceAK/pET-28a(+)-ido (2Δ-ido), the bioconversion ratio of L-Ile to 4-HIL was enhanced by about 15% compared to E. coli BL21(DE3)/pET-28a(+)-ido [BL21(DE3)-ido] strain. The CRISPR-Cas9 editing strategy has the potential in modifying multiple genes more rapidly and in optimizing strains for industrial production. © King Abdulaziz City for Science and Technology 2020.The natural estrogen 17β-estradiol (17β-E2) is a major endocrine disruptor. Accordingly, due to their frequent presence in global surface waters, prolonged exposure to estrogen-contaminated water may disrupt sexual development in animals. It has adverse effects on wildlife and humans. To date, the most effective strategy for estrogen removal from the environment is biodegradation using microorganisms. To this end, we isolated a strain of Lysinibacillus sphaericus, namely DH-B01, from a contraceptive factory in Beijing. The experimental results revealed that the bacterium has a high capacity to degrade estrogen, with a 17β-E2 degradation rate of about 97%, and produces the secondary metabolite estrone. In addition, a series of genes involved in steroid metabolism and stress response in L. sphaericus sp. DH-B01 were predicted, and several key genes with high similarity to those of other strains were subjected to sequence alignment to find their conserved regions. This is the first study of the ability of L. sphent L. sphaericus strains. The differences play an important role and further enrich the functionality and diversity of L. sphaericus strains. In subsequent studies, the specificity of L. sphaericus sp. DH-B01 can be applied to different environments for future environmental restoration. © King Abdulaziz City for Science and Technology 2020.Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (R f = 0.73) using mobile phase containing toluene ethyl acetate formic acid in the ratio (7.02.50.7, v/v/v) at 262 nm. The validated method was found linear (r 2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent. © King Abdulaziz City for Science and Technology 2020.Phosphate-solubilizing bacteria (PSB) have been widely used as biological fertilizer. However, its impact on the local microbial community has less been known. In this study, a mixture of PSB was inoculated into the tomato growth alone or combined with manure fertilizer. The growth parameter results showed that the combination use of PSB and compost could significantly increase the tomato growth and yield. The use of PSB could significantly increase pH, available phosphorus and several kinds of trace elements both in the rhizosphere and non-rhizosphere soil. The quantitative PCR and high-throughput sequencing results showed that the inoculated PSB did not become the dominant strains in the rhizosphere. However, the soil bacterial community structure was changed. The relative abundance of several indigenous bacteria, such as Pseudomonas, decreased, while the population of several bacteria, including Bacillus, Anaerolineaceae, Cytophagaceae, and Gemmationadaceae, increased. The redundancy analysis result showed that the soil properties had a great influence on the indigenous microbial community. In conclusion, the inoculated PSB could not colonize in the soil with a single inoculation. The PSB secreted small molecular organic acids to dissolve inorganic phosphorus and changed the soil properties, which changed the rhizosphere microbial community indirectly. © King Abdulaziz City for Science and Technology 2020.Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system. © King Abdulaziz City for Science and Technology 2020.
Website: https://www.selleckchem.com/products/tak-715.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.