Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Aging, even in the absence of clear pathology of dementia, is associated with cognitive decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable in understanding some of these changes in live humans, non-invasively. Traditional tensor techniques have revealed that the integrity of the fornix and other white matter tracts significantly deteriorates with age, and that this deterioration is highly correlated with worsening cognitive performance. However, traditional tensor techniques are still not specific enough to indict explicit microstructural features that may be responsible for age-related cognitive decline and cannot be used to effectively study gray matter properties. Here, we sought to determine whether recent advances in diffusion-weighted imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI) and Constrained Spherical Deconvolution, would provide more sensitive measures of age-related changes in the microstructure of the medial temporal lobe. We evaovide a far more comprehensive view than previously determined on the possible system-wide processes that may be occurring because of healthy aging and demonstrate that advanced diffusion-weighted imaging is evolving into a powerful tool to study more than just white matter properties. Copyright © 2020 Radhakrishnan, Stark and Stark.In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input-output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis. Copyright © 2020 Marchetta, Möhrle, Eckert, Reimann, Wolter, Tolone, Lang, Wolters, Feil, Engel, Paquet-Durand, Kuhn, Knipper and Rüttiger.Biological realism of dendritic morphologies is important for simulating electrical stimulation of brain tissue. By adding point process modeling and conditional sampling to existing generation strategies, we provide a novel means of reproducing the nuanced branching behavior that occurs in different layers of granule cell dendritic morphologies. In this study, a heterogeneous Poisson point process was used to simulate branching events. Conditional distributions were then used to select branch angles depending on the orthogonal distance to the somatic plane. The proposed method was compared to an existing generation tool and a control version of the proposed method that used a homogeneous Poisson point process. Morphologies were generated with each method and then compared to a set of digitally reconstructed neurons. read more The introduction of a conditionally dependent branching rate resulted in the generation of morphologies that more accurately reproduced the emergent properties of dendritic material per layer, Sholl intersections, and proximal passive current flow. Conditional dependence was critically important for the generation of realistic granule cell dendritic morphologies. Copyright © 2020 Chou, Yu and Berger.Neural entrainment is the synchronization of neural activity to the frequency of repetitive external stimuli, which can be observed as an increase in the electroencephalogram (EEG) power spectrum at the driving frequency, -also known as the steady-state response. Although it has been systematically reported that the entrained EEG oscillation persists for approximately three cycles after stimulus offset, the neural mechanisms underpinning it remain unknown. Focusing on alpha oscillations, we adopt the dynamical excitation/inhibition framework, which suggests that phases of entrained EEG signals correspond to alternating excitatory/inhibitory states of the neural circuitry. We hypothesize that the duration of the persistence of entrainment is determined by the specific functional state of the entrained neural network at the time the stimulus ends. Steady-state visually evoked potentials (SSVEP) were elicited in 19 healthy volunteers at the participants' individual alpha peaks. Visual stimulation consisted of a timulation is modulated by the preceding oscillatory activity. Copyright © 2020 Otero, Prado-Gutiérrez, Weinstein, Escobar and El-Deredy.Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports. Copyright © 2020 Seidel-Marzi and Ragert.Studies of spoken word recognition have reliably shown that both younger and older adults' recognition of acoustically degraded words is facilitated by the presence of a linguistic context. Against this benefit, older adults' word recognition can be differentially hampered by interference from other words that could also fit the context. These prior studies have primarily used off-line response measures such as the signal-to-noise ratio needed for a target word to be correctly identified. Less clear is the locus of these effects; whether facilitation and interference have their influence primarily during response selection, or whether their effects begin to operate even before a sentence-final target word has been uttered. This question was addressed by tracking 20 younger and 20 older adults' eye fixations on a visually presented target word that corresponded to the final word of a contextually constraining or neutral sentence, accompanied by a second word on the computer screen that in some cases could also fit the sentence context. Growth curve analysis of the time-course of eye-gaze on a target word showed facilitation and inhibition effects begin to appear even as a spoken sentence is unfolding in time. Consistent with an age-related inhibition deficit, older adults' word recognition was slowed by the presence of a semantic competitor to a degree not observed for younger adults, with this effect operating early in the recognition process. Copyright © 2020 Ayasse and Wingfield.Afferent feedback can appreciably alter the pharyngeal phase of swallow. In order to measure the stability of the swallow motor pattern during several types of alterations in afferent feedback, we assessed swallow during a conventional water challenge in four anesthetized cats, and compared that to swallows induced by fixed (20 Hz) and stochastic (1-20Hz) electrical stimulation applied to the superior laryngeal nerve. The swallow motor patterns were evaluated by electromyographic activity (EMG) of eight muscles, based on their functional significance laryngeal elevators (mylohyoid, geniohyoid, and thyrohyoid); laryngeal adductor (thyroarytenoid); inferior pharyngeal constrictor (thyropharyngeus); upper esophageal sphincter (cricopharyngeus); and inspiratory activity (parasternal and costal diaphragm). Both the fixed and stochastic electrical stimulation paradigms increased activity of the laryngeal elevators, produced short-term facilitation evidenced by increasing swallow durations over the stimulus period, and conversely inhibited swallow-related diaphragm activity. Both the fixed and stochastic stimulus conditions also increased specific EMG amplitudes, which never occurred with the water challenges. Stochastic stimulation increased swallow excitability, as measured by an increase in the number of swallows produced. Consistent with our previous results, changes in the swallow motor pattern for pairs of muscles were only sometimes correlated with each other. We conclude that alterations in afferent feedback produced particular variations of the swallow motor pattern. We hypothesize that specific SLN feedback might modulate the swallow central pattern generator during aberrant feeding conditions (food/liquid entering the airway), which may protect the airway and serve as potentially important clinical diagnostic indicators. Copyright © 2020 King, Shen, Musselwhite, Huff, Reed, Poliacek, Howland, Dixon, Morris, Bolser, Iceman and Pitts.The assessment of the consciousness level of Unresponsive Wakefulness Syndrome (UWS) patients often depends on a subjective interpretation of the observed spontaneous and volitional behavior. To date, the misdiagnosis level is around 30%. The aim of this study was to observe the behavior of UWS patients, during the administration of noxious stimulation by a Trace Conditioning protocol, assessed by the Galvanic Skin Response (GSR) and Heart Rate Variability (HRV) entropy. We recruited 13 Healthy Control (HC) and 30 UWS patients at 31 ± 9 days from the acute event evaluated by Coma Recovery Scale-Revised (CRS-R) and Nociception Coma Scale (NCS). Two different stimuli [musical stimulus (MUS) and nociceptive stimulus (NOC)], preceded, respectively by two different tones, were administered following the sequences (A) MUS1 - NOC1 - MUS2 - MUS3 - NOC2 - MUS4 - NOC3 - NOC*, and (B) MUS1*, NOC1*, NOC2*, MUS2*, NOC3*, MUS3*, NOC4*, MUS4*. All the (*) indicate the only tones administration. CRS-R and NCS assessments were repeated for three consecutive weeks.
Here's my website: https://www.selleckchem.com/products/U0126.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team