NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Detection regarding lengthy noncoding RNAs reveals the effects involving dinotefuran about the brain within Apis mellifera (Hymenopptera: Apidae).
Based on field experiments in 2017-2019, we examined the characteristics, yield effect and regulatory mechanism of light energy utilization in alfalfa/gramineous forage grass intercropping. With monoculture of alfalfa, forage triticale (C3 plant), and forage maize (C4 plant) as control, we measured the yield effect, the effect of light energy utilization factor on yield formation, the characteristic difference and mechanism of light energy utilization under alfalfa/triticale and alfalfa/maize intercropping patterns. Results showed that land equivalent ratios of both intercropping patterns were all greater than 1, indicating that land utilization ratio and yield benefit of the two intercropping patterns were higher than that of monoculture, among which alfalfa/triticale intercropping pattern was the most promising one. The contribution of light energy utilization factors to yield was following an order of leaf area index (1.531) > net photosynthetic rate (0.882) > intercellular CO2 concentration (0.282) > tranion and enhancing the collection and transmission of light energy.The matching of root system is a key factor driving the resistance of plant community to soil erosion. In this study, Amoeba graphical method was used to establish a root framework erosion resistance index (ERIrf, %) from three dimensions of root morphology, quantity and spatial concerns to quantify the effective of root erosion resistance by plant community. We analyzed root growth characteristics of plant community from abandoned land, Caragana korshinskii and Robinia pseudoacacia communities in loess hilly area. The results showed that the parameters of constructing the root framework erosion resistance index included the acting coefficient of root framework (α), root density (Rb, kg·m-3), root framework degree (S), soil bulk density (ρ, g·cm-3), and soil and water conservation coefficient (φ). The equation could be expressed as ERIrf=α×Rd×S×φρ×100%. This root framework erosion resistance index well represented the erosion resistance effects of plant root system. Logarithmic function could better fit the relationship between soil erosion resis-tance ability and root framework erosion resistance index. Our findings would provide scientific reference for the construction of anti-erosion vegetation community and assessment of ecological construction.Based on 1207 knots from 49 sample trees of 29 standard plots of Korean pine plantations in Linkou and Dongjingcheng Forest Bureau of Heilongjiang Province, China, we extracted longitudinal sections of knots using the image processing software Digimizer and represented the shape of knots using two-dimensional scatter plots. According to the two-dimensional scatter plots, knots of Korean pine plantation were divided into three types 1) alive knots (whole knot contained only sound knot portion); 2) non-occluded dead knots (whole knot contained both sound and loose knot portions); 3) occluded dead knots (the sound and loose portion of the knot were partially occluded by the bark). For all the three types of knots, the volume of sound knot was calculated by mathematical integral of the sound knot shape equation. The volume of loose knot was calculated using the volume equation of a cylinder. The total volume of knots was calculated as the sum of sound and loose knot volume. Finally, based on knot variables (diameter, relative height and total length of knots) and tree variable (diameter at breast height), we established the prediction models for sound knot volume, loose knot volume, and total volume of knot using the linear mixed model at plot level and tree level. Compared with fixed-effects model, the mixed effects models of the volume of sound knot, loose knot, and total knots provided more accurate parameter estimation, more uniform residual distribution, and higher model fitting precision. The validation results showed that prediction precision of each fixed-effect model was higher than 90%, while that of the mixed models with plot and tree effect was above 93%, indicating that the established model could well predict the volume of knot for Korean pine plantation.To evaluate the adaptability of the cyclic heating mode in the thermal diffusion probe method (TDP) in the measurement of trunk sap flow and the accuracy of the measurement of tree transpiration water consumption, we selected Platycladus orientalis as the research object and set three different heating modes 60 min/0 min (continuous heating mode), 30 min/30 min (cyclic heating mode with 30 min heating and 30 min cooling), 10 min/50 min (cyclic heating mode with 10 min heating and 50 min cooling). Based on the measured value of the whole tree container wei-ghing method, the temperature gradient characteristics of different heating modes were analyzed using the measurement technology of thermal diffusive trunk sap flow. The Granier's corrected formulas of cyclic heating modes were constructed, with its error being analyzed by validity verification. The results showed that sap flow rate calculated by the cyclic heating mode was consistent with the diurnal variation of the transpiration rate measured by the whole tree weighing method. The temperature of cyclic heating mode could quickly rise, fall and performed stably. The sap flow calculated by Granier's original formula was 61.3% lower than that by weighing method. The corrected Granier formula in the mode of 10 min/50 min and 30 min/30 min were Fd=0.0177K0.9457 (R2=0.88) and Fd=0.0378K1.3146(R2=0.85), respectively. The difference of sap flow rate in P. orientalis by the new formula was smaller than that measured by the whole tree weighing method, and the error of transpiration rate calculated by the 10 min/50 min correction formula was the smallest, 5.9% lower than that calculated by the weighing method, and thus could express the real flow rate. The 10 min/50 min cyclic heating mode could be used to reduce the effect of natural temperature difference, cut down power consumption, and accurately reflect the actual sap flow rate of P. orientalis.We isolated phosphate solubilizing bacteria (PSB) from the rhizosphere soil of P. massoniana by the standard dilution plating technique, and determined the phosphate solubilizing characteristics of PSB by the Molybdenum antimony resistance colorimetric method. We explored the mechanism of phosphorus dissolution through analysis of the relationship between the phosphate-solubilizing ability of PSB and the pH of the fermentation broth and the determination of organic acids in the fermentation broth by HPLC-MS. The effects of PSB on the growth and physiology of P. massoniana were clarified by measuring the growth, physiology, soil nutrients, and soil enzyme activity of potted P. massoniana seedlings inoculated with PSB. The results showed that 16 strains of PSB were screened from the rhizosphere of P. Tacrolimus manufacturer massoniana. Among those strains, WJ27 had the best effect of solubilizing phosphorus, with the amount of phosphate solubilized reaching 411.98 mg·L-1 after five days of liquid culture. The strain was identified as Burkholderia sp.
My Website: https://www.selleckchem.com/products/FK-506-(Tacrolimus).html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.