Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
From seven IAAO studies, the inter-individual variability was estimated as a coefficient of variation of about 20%. The coefficient of variation of the protein requirement determined by IAAO study was wider than the ordinary coefficient of variation obtained from the nitrogen balance test.Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. see more However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.The urinary 8-hydroxy-2'-deoxyguanosine levels have been widely used as a biomarker of oxidative stress. The purpose of this study is to investigate the diurnal and day-to-day variations of urinary 8-hydroxy-2'-deoxyguanosine levels. link2 For the diurnal variation, the urine samples were collected at the time of awakening and every 2 h, from 1000 to 2200, from 6 healthy participants. For the day-to-day variation, the urine samples were collected at the time of awakening for 35 consecutive days, from 27 healthy participants. As a result, no differences were observed in the diurnal urinary 8-hydroxy-2'-deoxyguanosine levels, and each subject had a characteristic 8-hydroxy-2'-deoxyguanosine level. On the other hand, the daily 8-hydroxy-2'-deoxyguanosine values showed a certain range of variation reflecting lifestyle factors, such as stress status, exercise, sleep time, drinking and diet. In conclusion, urinary 8-hydroxy-2'-deoxyguanosine may be a useful biomarker to control and prevent oxidative stress-related diseases, if the certain range of day-to-day variations of urinary 8-hydroxy-2'-deoxyguanosine is known. Even with only one measurement per year, the baseline urinary 8-hydroxy-2'-deoxyguanosine level could be achieved in a few years by incorporating the 8-hydroxy-2'-deoxyguanosine measurement as part of an annual health check. As the number of subjects was limited, further studies are needed for practical applications.Reactive sulfur species, including hydrogen sulfide, hydropersulfide, and polysulfide, have many roles in biological systems. For example, hydrogen sulfide is involved in the relaxation of vascular smooth muscles and mediation of neurotransmission, while sulfane sulfur, which exists in cysteine persulfide/polysulfide, and glutathione persulfide/polysulfide, is involved in physiological antioxidation and cytoprotection mechanisms. Fluorescence imaging is well suited for real-time monitoring of reactive sulfur species in living cells, and many fluorescent probes for reactive sulfur species have been reported. In such probes, the choice of detection chemistry is extremely important, not only to achieve effective fluorescence switching and high selectivity, but also because the reactions may be applicable to develop other chemical tools, such as reactive sulfur species donors/scavengers. Here, we present an overview of both widely used and recently developed fluorescent probes for reactive sulfur species, focusing especially on the chemical reactions employed in them for fluorescence switching. We also briefly introduce some applications of fluorescent probes for hydrogen sulfide and sulfane sulfur.Cysteine persulfide (CysSSH) and polysulfides (CysS[S] n H, n>1) are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Recent advances in the development of analytical methods for detection and quantification of persulfides and polysulfides have revealed the biological presence, in both prokaryotes and eukaryotes, of persulfide/polysulfide in diverse forms such as CysSSH, glutathione persulfide and protein persulfides. Accumulating evidence has suggested that persulfide/polysulfide species may involve in a variety of biological events such as biosyntheses of sulfur-containing molecules, tRNA modification, regulation of redox-dependent signal transduction, mitochondrial energy metabolism via sulfur respiration, cytoprotection from oxidative stress via their antioxidant activities, and anti-inflammation against Toll-like receptor-mediated inflammatory responses. Development of chemical sulfur donors may facilitate further understanding of physiological and pathophysiological roles of persulfide/polysulfide species, including regulatory roles of these species in immune responses.Lichenized fungi usually develop complex, stratified morphologies through an intricately balanced living together with their algal partners, but several species are known to form only more or less loose associations with algae. These borderline lichens are still little explored although they could inform us about early stages of lichen evolution. We studied the association of the extremely halotolerant fungus Hortaea werneckii with the alga Dunaliella atacamensis, discovered in a cave in the Atacama Desert (Chile), and with D. salina, common inhabitant of saltern brines. D. atacamensis forms small colonies, in which cells of H. werneckii can be frequently observed, while such interaction has not been observed with D. salina. As symbiotic interactions between Dunaliella and Hortaea have not been reported, we performed a series of co-cultivation experiments to inspect whether these species could interact and develop more distinct lichen-like symbiotic structures. We set up co-cultures between axenic strains of Hortaea werneckii (isolated both from Mediterranean salterns and from the Atacama cave) and isolates of D. atacamensis (from the Atacama cave) and D. salina (isolated from Mediterranean salterns). Although we used different growth media and cultivation approaches, bright field and SEM microscopy analyses did not indicate any mutual effects in these experiments. We discuss the implications for fungal algal interactions along the transition from algal exploiters to lichen symbioses.Since the emergence of the virus that causes COVID-19 (the SARS-CoV-2) in Wuhan in December 2019, societies all around the world have had to change their normal life patterns due to the restrictions and lockdowns imposed by governments. These changes in life patterns have a direct reflection on energy consumption. Thanks to Smart Grid technologies, specifically to the Advance Metering Infrastructure at secondary distribution network, this impact can be evaluated even at the customer level. Thus, this paper analyzes the consumption behavior and the impact that this crisis has had using Smart Meter data. The proposed approach includes the selection and normalization of features, automatic clustering, the obtaining of the estimated consumption without considering the crisis (at short and mid-terms) and the impact evaluation. The proposed approach has been tested on a case with a real Smart Meter infrastructure from Manzanilla (Huelva, Spain). The results of this use case showed that residential customers have inuring the COVID-19 crisis.The aim of this work was to compare the surface adsorption and lubrication properties of plant and dairy proteins. Whey protein isolate (WPI) and pea protein isolate (PPI) were chosen as model animal and plant proteins, respectively, and various protein concentrations (0.1-100 mg/mL) were studied with/without heat treatment (90 °C/60 min). Quartz crystal microbalance with dissipation monitoring (QCM-D) experiments were performed on hydrophilic (gold) and hydrophobic polydimethylsiloxane (PDMS) sensors, with or without a mucin coating, latter was used to mimic the oral surface. Soft tribology using PDMS tribopairs in addition to wettability measurements, physicochemical characterization (size, charge, solubility) and gel electrophoresis were performed. Soluble fractions of PPI adsorbed to significantly larger extent on PDMS surfaces, forming more viscous films as compared to WPI regardless of heat treatment. Introducing a mucin coating on a PDMS surface led to a decrease in binding of the subsequent dietary protein layers, with PPI still adsorbing to a larger extent than WPI. Such large hydrated mass of PPI resulted in superior lubrication performance at lower protein concentration (≤10 mg/mL) as compared to WPI. However, at 100 mg/mL, WPI was a better lubricant than PPI, with the former showing the onset of elastohydrodynamic lubrication. Enhanced lubricity upon heat treatment was attributed to the increase in apparent viscosity. Fundamental insights from this study reveal that pea protein at higher concentrations demonstrates inferior lubricity than whey protein and could result in unpleasant mouthfeel, and thus may inform future replacement strategies when designing sustainable food products.Understanding residents' daily activity chains provides critical support for various applications in transportation, public health and many other related fields. Recently, mobile phone location datasets have been suggested for mining activity patterns because of their utility and large sample sizes. Although recently machine learning-based models seem to perform well in activity purpose inference using mobile phone location data, most of these models work as black boxes. To address these challenges, this study proposes a flexible white box method to mine human activity chains from large-scale mobile phone location data by integrating both the spatial and temporal features of daily activities with varying weights. We find that the frequency distribution of major activity chain patterns agrees well with the patterns derived based on a travel survey of Shenzhen and a state-of-the-art method. Moreover, a dataset covering over 16.5% of the city population can yield a reasonable outcome of the major activity patterns. The contributions of this study not only lie in offering an effective approach to mining daily activity chains from mobile phone location data but also involve investigating the impact of different data conditions on the model performance, which make using big trajectory data more practical for domain experts.The COVID-19 epidemic is influencing global population. Social media has become important platforms to acquire and exchange information during the outbreak of COVID-19. This study explores public attention on social media. Popular Weibo texts related to COVID-19 with "coronavirus" and "pneumonia" as the keywords during December 27, 2019 and May 31, 2020 were collected in our study for public attention analysis. By combining data mining and text analysis, the public attention level trend in different stages were presented. Then a correlation analysis between public attention level and COVID-19 related cases number, topic analysis, and sentiment analysis were conducted. Significant positive correlation between public attention level and COVID-19 related cases number was identified. Based on Latent Dirichlet Allocation model, topic extraction was implemented in different stages and 41 topics were identified totally. link3 For a comprehensive understanding of public emotions, sentiment analysis was performed. This study provides valuable lessons for public response to COVID-19.
Read More: https://www.selleckchem.com/products/dnqx.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team