Notes
Notes - notes.io |
The in vitro and in vivo experiments demonstrated cancer cytotoxicity and tumor inhibiting properties of the developed nanomedicine.Currently, there is no compendial-level method to assess dissolution of particulate systems administered in the periodontal pocket. This work seeks to develop dissolution methods for extended release poly(lactic-co-glycolic acid) (PLGA) microspheres applied in the periodontal pocket. Arestin®, PLGA microspheres containing minocycline hydrochloride (MIN), is indicated for reduction of pocket depth in adult periodontitis. Utilizing Arestin® as a model product, two dissolution methods were developed a dialysis set-up using USP apparatus 4 and a novel apparatus fabricated to simulate in vivo environment of the periodontal pocket. In the biorelevant method, the microspheres were dispersed in 250 μL of simulated gingival crevicular fluid (sGCF) which was enclosed in a custom-made dialysis enclosure. sGCF was continuously delivered to the device at a biorelevant flow rate and was collected daily for drug content analysis using UPLC. Both methods could discriminate release characteristics of a panel of MIN-loaded PLGA microspheres that differed in composition and process conditions. Dyes chemical A mechanistic model was developed, which satisfactorily explained the release profiles observed using both dissolution methods. The developed methods may have the potential to be used as routine quality control tools to ensure batch-to-batch consistency and to support evaluation of bioequivalence for periodontal microspheres.With increasing interest in chronopharmaceutics, press-coated tablets have become a key technology in the field of modified release drug delivery systems. Although their benefits in terms of drug release have been largely studied, the comprehension of the compaction process of press-coated tablets is yet to complete. Particularly, the effects of geometrical parameters like the ratios between the thickness/diameter of the core and the thickness/diameter of the whole tablet were so far not much considered. Moreover, there is only few studies in the literature about the effect of the press-coating compression on the final structure and properties of the core. The present work consists in a joint experimental and numerical study that aims to assess these points. The study revealed high stress concentrations on the core during compression, causing high permanent deformations of the core, especially when the ratio between the core thickness and the total tablet thickness was high. The mechanical properties of the core tablet were also shown to be impacted its density and strength were found to decrease before increasing again along the coating-compression. This effect was highlighted to be dependent on the triaxiality of the stress state (i.e. the ratio between the stresses in the different directions), itself depending on the two studied geometrical parameters. As the properties of the core affect the release attributes, ratios between the dimensions of the core and the dimensions of the whole tablet (thickness, diameter) should be taken into account as critical parameters for the manufacture of press-coated tablets.The elevated production of reactive oxygen species (ROS) in wounded sites triggers a series of harmful effects, including cellular senescence, fibrotic scar formation, and inflammation. Therefore, alleviating oxidative stress in the microenvironment of wounded sites might promote regenerative wound healing. Generally, ROS-scavenging nanocapsules are effective for treating wounds owing to their anti-oxidative stress activity and targeted effects. In this study, a highly versatile ferrocene functional polymer was synthesized by one-pot radical polymerization, for formulating self-assembled ferrocene nanocapsules (FNCs), which could function as smart carriers of an antioxidant, α-tocopherol (TP), with high stability and loading efficiency. The FNCs showed ROS-sensitive properties, as demonstrated using dynamic light scattering, transmission electron microscopy, and the controlled release of a model drug in an ROS microenvironment. The antioxidant activity of TP-loaded FNCs, analyzed using 2,2-diphenyl-1-picrylhydrazyl assay, was significantly higher than that of unloaded TP. link2 Furthermore, TP-loaded FNCs repressed oxidative damage to mouse NIH 3T3 fibroblasts and reduced intracellular ROS production according to an in vitro antioxidant assay. Most importantly, TP-loaded FNCs showed good biocompatibility and greatly facilitated the healing of infected wounds, as demonstrated using a scratch assay. Therefore, TP-loaded FNCs have potential as an ROS-mediated drug delivery system to treat various oxidative stress-associated diseases.Oral films (OFs) continue to attract attention as drug delivery systems, particularly for pedatric and geriatric needs. However, immiscibility between different polymers limits the full potential of OFs from being explored. One example is pullulan (PUL), a novel biopolymer which often has to be blended with other polymers to reduce cost and alter its mechanical properties. In this study, the state-of-the-art in fabrication techniques, three-dimensional (3D) printing was used to produce hybrid film structures of PUL and hydroxypropyl methylcellulose (HPMC), which were loaded with caffeine as a model drug. 3D printing was used to control the spatial deposition of films. HPMC was found to increase the mean mechanical properties of PUL films, where the tensile strength, elastic modulus and elongation break increased from 8.9 to 14.5 MPa, 1.17 to 1.56 GPa and from 1.48% to 1.77%, respectively. In addition, the spatial orientation of the hybrid films was also explored to determine which orientation could maximize the mechanical properties of the hybrid films. The results revealed that 3D printing could modify the mechanical properties of PUL whilst circumventing the issues associated with immiscibility.Glioblastoma (GBM) is a difficult-to-treat cancer, likely attributed to the blood brain barrier and drug resistance. Nose-to-brain drug delivery is a direct and non-invasive pathway for brain targeting with low systemic toxicity. Disulfiram (DSF) has shown its effectiveness against GBM, especially with copper ion (Cu). In this work, we designed a DSF loaded ion-sensitive nanoemulsion in situ gel (DSF-INEG) that was delivered intranasally along with Cu to the rat brains for the GBM treatment. The developed DSF-INEG nanomedicine showed a suitable particle size of 63.4 ± 1.1 nm and zeta potential of -23.5 ± 0.2 mV with a favorable gelling ability and prolonged DSF release. The results in vitro indicate DSF-INEG/Cu effectively inhibited the proliferation of both C6 and U87 cells. Besides, the excellent brain-targeting efficacy via nose-to-brain delivery was proved by the highest fluorescence signal of Cy5.5-INEG in the rat brains. Moreover, GFP imaging showed enhanced tumor growth inhibition of the rats by the DSF-INEG/Cu treatment, and their median survival time was 1.6 and 1.2 folds than those of the rats in the control and DSF/Cu treated groups, respectively, with no obvious histopathological damage to normal tissues. Overall, DSF-INEG/Cu could be a promising intranasal nanomedicine for effective GBM treatment.Orlistat is a pancreatic lipase (PL) inhibitor that inhibits dietary lipid absorption and is used to treat obesity. The oral bioavailability of orlistat is considered zero after administration in standard formulations. This is advantageous in the treatment of obesity. However, if orlistat absorption could be improved it has the potential to treat diseases such as acute and critical illnesses where PL transport to the systemic circulation via gut lymph promotes organ failure. Orlistat is highly lipophilic and may associate with intestinal lipid absorption pathways into lymph. Here we investigate the potential to improve orlistat lymph and systemic uptake through intestinal administration in lipid formulations (LFs). The effect of lipid type, lipid dose, orlistat dose, and infusion time on lymph and systemic availability of orlistat was investigated. link3 After administration in all LFs, orlistat concentrations in lymph were greater than in plasma, suggesting direct transport via lymph. Lymph and plasma orlistat derivative concentrations were ~8-fold greater after administration in a long-chain fatty acid (LC-FA) compared to a lipid-free, LC triglyceride (LC-TG) or medium-chain FA (MC-FA) formulation. Overall, administration of orlistat in a LC-FA formulation promotes lymph and systemic uptake which may enable treatment of diseases associated with elevated systemic PL activity.Lipoproteins are endogenously present nanocarriers and are the primary commuters of cholesterol within the body. Among lipoproteins, HDL inherits size in nm range with anti-oxidant potential and receptor affinity which makes them an attractive candidate for drug delivery. Hence, in this review, we glance across the biosynthesis, architecture, and methods to prepare rHDL which acts as an endogenously present delivery vehicle. The review critically describes the range of applications possible for targeted delivery in multiple ailments (cancer, atherosclerosis, Alzheimer, age-related macular degeneration and psoriasis) using rHDL. Moreover, the review also expounds on to the case reports where, drug delivery aspect of rHDL is augmented through stimuli sensitivity (ultrasounds, magnetic field, photodynamic therapy) and pH dependent approaches. Further, the role of rHDL in combating the blood brain barrier for efficient delivery of peptides into the brain is also been highlighted. Additionally, the manuscript also expounds on rHDL based formulations which are under clinical review with elaboration on challenges and future prospects pertaining to their clinical translation. Overall, the present article showcases several aspects of rHDL, which are or can be explored for present and future investigations.Passive and active targeted nanoparticulate delivery systems show promise to compensate for lacking properties of conventional therapy such as side effects, insufficient efficiency and accumulation of the drug at target site, poor pharmacokinetic properties etc. For active targeting, physically or covalently conjugated ligands, including monoclonal antibodies and their fragments, are consistently used and researched for targeting delivery systems or drugs to their target site. Currently, there are several FDA approved actively targeted antibody-drug conjugates, whereas no active targeted delivery system is in clinical use at present. However, efforts to successfully formulate actively targeted delivery systems continue. The scope of this review will be the use of monoclonal antibodies and their fragments as targeting ligands. General information about targeted delivery and antibodies will be given at the first half of the review. As for the second half, fragmentation of antibodies and conjugation approaches will be explained. Monoclonal antibodies and their fragments as targeting ligands and approaches for conjugating these ligands to nanoparticulate delivery systems and drugs will be the main focus of this review, polyclonal antibodies will not be included.
Website: https://www.selleckchem.com/products/fluorescein-5-isothiocyanate-fitc.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team