NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Pointing focus on occasion changes boosts memory space updating regarding seniors.
Oxidative stress and neuroinflammation are critically involved in amyloid beta (Aβ) induced cognitive impairments. β-Lapachone (β-LAP) is a natural activator of NAD(P)H quinone oxidoreductase 1 (NQO1) which has antioxidant and anti-inflammatory properties.This study investigated the effect of β-LAP administration on Aβ-induced memory deficit, oxidative stress, neuroinflammation, and apoptosis cell death in the hippocampus. Forty BALB/c mice were allocated into control, sham, β-LAP (βL), Aβ, and Aβ + βL groups. Intracerebroventricular injection of Aβ1-42 was used to induce Alzheimer's disease (AD) model. Mice in the βL and Aβ + βL groups were treated with β-LAP (10 mg/kg, i.p) for 4 days. Results revealed that β-LAP attenuated memory impairment in the Aβ-received mice, as measured in the novel object recognition (NOR) and Barnes maze tests. Moreover, Aβ resulted in inflammasome activation evident by enhanced caspase-1 immunoreactivity and interleukin-1 beta (IL-1β) protein levels. However, β-LAP could markedly reduce reactive oxygen species (ROS) production and down-regulate mRNA expression of NLRP3 inflammasome and protein levels of cleaved caspase 1 and IL-1β. Additionally, β-LAP-treated mice showed increased SIRT1 levels and NAD+/NADH ratio in the hippocampus. These results were followed by fewer number of TUNEL-positive cell, reduced hippocampal atrophy and neuronal loss in the hippocampal dentate gyrus (DG). These results indicated that the protective effect of β-LAP against AD-associated cognitive deficits is partially through its strong antioxidant and anti-inflammatory actions. V.There is little information in the sepsis treatment guidelines on the prevention and treatment of cognitive dysfunction after sepsis. This study aimed to explore whether Recombinant human brain natriuretic peptide (rhBNP) has protective effects against sepsis-associated encephalopathy (SAE) in a mouse model. The results showed that 50 μg/kg of rhBNP significantly improved the 14-day survival of cecal ligation and puncture (CLP)-induced septic mice and mitigated cognitive dysfunction and anxiety. Fourteen days after CLP surgery, septic mice showed increased BBB permeability and neuronal apoptosis. rhBNP treatment significantly reduced pathological changes in the brain of CLP mice. Meanwhile, rhBNP therapy also reduced the level of inflammatory cytokines in the hippocampus, possibly via inhibiting the TLR4-NF-κB pathway. These results indicate that rhBNP may be a promising drug for the treatment of SAE. The garlic-derived organosulfur compound S-allylmercaptocysteine (SAMC) has been reported to exhibit anti-inflammatory and anti-oxidative activities, whereas its potential therapeutic effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is unknown. In this study, we focused on exploring the therapeutic effects of SAMC on LPS-induced ALI mice and the involvement of underlying molecular mechanisms. BalB/c mice were treated with SAMC (10, 30 and 60 mg/kg) or positive control N-acetylcysteine (NAC, 500 mg/kg) by gavage after intratracheal instillation of LPS for 30 min and were sacrificed 24 h after LPS administration. Our results indicate that the treatment with SAMC not only ameliorated the histological changes but also decreased LPS-triggered lung edema. Moreover, SAMC displayed an anti-inflammatory effect through reducing inflammatory cells infiltration, myeloperoxidase (MPO) formation and inhibiting pro-inflammatory cytokines/mediator production including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) via suppressing the activation of nuclear factor-kappaB (NF-κB) signaling pathway. Furthermore, SAMC attenuated oxidative stress evoked by LPS via diminishing malondialdehyde (MDA) formation and reversing glutathione (GSH) and superoxide dismutase (SOD) depletion. Meanwhile, SAMC up-regulated expressions of endogenous antioxidant/detoxifying proteins including heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1(NQO1) through reversing the suppression of Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway. Our results demonstrate that SAMC effectively attenuated LPS-induced ALI which was largely dependent upon inhibition of inflammation and oxidative stress via NF-κB and Keap1/Nrf2 signaling pathways. Salidroside, an active component extracted from Rhodiola rosea, has been reported to inhibit allergic asthma. However, its mechanism has not been fully elucidated. Group 2 innate lymphoid cells (ILC2s) accumulate in the lung and cooperate with other cells to drive type 2 inflammation stimulated by inhaled allergens. The study aims to explore the suppressive effect of salidroside on ILC2s and IL-33/IL-33R (ST2) axis in allergic airway inflammation. The ovalbumin (OVA)-sensitized/challenged mice were established. Airway eosinophil recruitment, increased total IgE in the serum and type 2 cytokines IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluids and lung tissues were identified in the OVA-induced mice model, all of which were inhibited by pretreatment with different doses of salidroside. Moreover, salidroside suppressed lung total ILC2 and ST2-expressing ILC2 accumulation, lung IL-33 and ST2 expressions in mice. In vitro, OVA could induce IL-33 expression in BEAS-2B cells, which was also effectively inhibited by salidroside. This study firstly reveals salidroside as a potential therapeutic drug for allergic asthma by inhibiting ILC2-mediated airway inflammation via targeting IL-33/ST2 axis. V.Avian pathogenic Escherichia coli (APEC) is a kind of highly pathogenic parenteral bacteria, which adheres to chicken type II pneumocytes through pili, causing inflammatory damage of chicken type II pneumocytes. Without affecting the growth of bacteria, anti-adhesion to achieve anti-inflammatory effect is considered to be a new method for the treatment of multi-drug-resistant bacterial infections. In this study, the anti-APEC activity of schizandrin was studied in vitro. By establishing the model of chicken type II pneumocytes infected with APEC-O78, the adhesion number, the expression of virulence genes, the release of lactate dehydrogenase (LDH), levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8 and activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were detected. The results showed that schizandrin reduced the release of LDH and the adherence of APEC on chicken type II pneumocytes. Moreover, schizandrin markedly decreased the levels of IL-1β, IL-8, IL-6, and TNF-α, the mechanism responsible for these effects was attributed to the inhibitory effect of schizandrin on NF-κB and MAPK signaling activation. In conclusion, our findings revealed that schizandrin could reduce the inflammatory injury of chicken type II pneumocytes by reducing the adhesion of APEC-O78 to chicken type II pneumocytes. The results indicate that schizandrin can be a potential agent to treat inflammation caused by avian colibacillosis. V.A set of GluN2B NMDA receptor antagonists with conformationally restricted phenylethylamine substructure was prepared and pharmacologically evaluated. The phenylethylamine substructure was embedded in ring expanded 3-benzazocines 4 as well as ring-contracted tetralinamines 6 and indanamines 7. The ligands 4, 6 and 7 were synthesized by reductive alkylation of secondary amine 11, reductive amination of ketones 12 and 16 and nucleophilic substitution of nosylates 14 and 17. The moderate GluN2B affinity of 3-benzazocine 4d (Ki = 32 nM) translated into moderate cytoprotective activity (IC50 = 890 nM) and moderate ion channel inhibition (60% at 10 μM) in two-electrode voltage clamp experiments with GluN1a/GluN2B expressing oocytes. Although some of the tetralinamines 6 and indanamines 7 showed very high GluN2B affinity (e.g. Ki (7f) = 3.2 nM), they could not inhibit glutamate/glycine inducted cytotoxicity. The low cytoprotective activity of 3-benzazocines 4, tetralinamines 6 and indanamines 7 was attributed to the missing OH moiety at the benzene ring and/or in benzylic position. Docking studies showed that the novel GluN2B ligands adopt similar binding poses as Ro 25-6981 with the central H-bond interaction between the protonated amino moiety of the ligands and the carbamoyl moiety of Gln110. However, due to the lack of a second H-bond forming group, the ligands can adopt two binding poses within the ifenprodil binding pocket. Six novel organotin phosphonate complexes, [(Me3Sn)4(HL1)4]n1, [(Me3Sn)2(HL2)2]n2, [(Me3Sn)2L3(H2O)]n3, [(Ph3Sn)(HL1)]64, [(Ph3Sn)2L2]n5 and [(Ph3Sn)2L3]66, derived from phosphonic acid ligands [NaHL1 = 1-C10H7OPO2(OH)Na, H2L2 = 1-C10H7PO(OH)2, H2L3 = 2-C10H7PO(OH)2], have been synthesized and characterized by elemental analysis, FT-IR, NMR (1H, 13C, 31P and 119Sn) spectroscopy and X-ray crystallography. The structural analysis reveals that complexes 1 and 5 display 1D infinite zig-zag chain structures, and complex 2 shows 1D right-handed helical chain structure, while complex 3 displays 1D left-handed helical chain structure. Complexes 4 and 6 are 24-membered macrocyclic rings interconnected by P, O and Sn atoms. Additionally, the molecules of complexes 1 and 3 are further linked through intermolecular π···π and O-H···O interaction into supramolecular structures, respectively. Furthermore, we preliminarily estimated in vitro cytostatic activity of complexes 1-6 against the human cervix tumor cells (HeLa), human hepatocellular carcinoma cells (HepG-2) and human normal breast cells (HBL-100). Importantly, the anti-proliferative properties and possible pathway of complex 6 are investigated, and the results demonstrate that complex 6 could induce apoptotic cell death via an overload of intracellular reactive oxygen species (ROS) levels and the dysfunctional depolarization of mitochondrial membranes. The focus of this work is pointing out the different behavior of two structurally related Pt(II) complexes, the anionic cyclometalated NBu4[(Bzq)Pt(Thio)], 1 and the neutral [(Phen)Pt(Thio)], 2, (Bzq = benzo[h]quinoline, Phen = 1,10-phenantroline, Thio = 1,2-benzenedithiolate), on the interaction with human serum albumin (HSA), a key drug-delivery protein in the bloodstream. Being very limited the number of anionic Pt(II) complexes reported to date, this is a pioneering example of report on a protein-ligand interaction involving a negatively charged platinum compound. The study was carried out by using fluorescence spectroscopy, differential scanning calorimetry and molecular docking simulations. The results revealed a strong binding affinity between the anionic compound and the protein, whereas a weak/moderate binding interaction was highlighted for the neutral one. TL13-112 cell line Comparative studies with site specific ligands (warfarin and ibuprofen), allowed us to identify the protein binding sites of the two compounds. The work aims to shed light on the relevance of the charge in designing new drugs with a favorable binding affinity for HSA, which strongly contributes to influence their pharmacological and toxicological profile.
Website: https://www.selleckchem.com/products/tl13-112.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.