NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Ingredient quantile mixed results modelling using program to be able to longitudinal CD4 rely data.
Early and accurate detection of tumor assists in identifying more effective therapies. Gold nanoparticles (GNPs) were synthesized by green synthesis method using gallic acid (GA) then characterized and labeled with technetium-99m. This new platform was biologically evaluated in both normal and solid tumor bearing mice. The in-vivo study of [99mTc]Tc-gallic-GNPs via both I.V. and I.T injecton showed a high accumulation in tumor site. As a result, [99mTc]Tc-gallic-GNPs can be afforded as a potential nano-platform for tumor imaging.
Detection of urinary stone composition before treatment can help in its management. The purpose of this work is to study the feasibility of classifying the kidney stone compositions in vivo by dual-energy kidney, ureter, and bladder (DEKUB) X-ray imaging.

Six urinary stone compositions with nine diameters were simulated in a water phantom, and two 70- and 120-kVp images were acquired by radiography tally of the Monte Carlo code. Six image features among 10 were selected for classification of the kidney stones. Four classification algorithms were applied to the dataset using MatLab software. Five-fold cross-validation was applied to the most accurate algorithm for 1000 times and the true and false detection rates were reported.

The obtained accuracy of kidney stone classification was 96±2% and this decreased with increasing noise level. The DEKUB was successful in distinguishing brushite, calcium oxalate monohydrate, cystine, and calcium phosphate stones from other types.

Acceptable results achieved by the low-cost, low-dose DEKUB system in detection of kidney stone composition not only obviates a need for complicated imaging systems such as dual-energy computed tomography, but also provides an available and useful aid for physicians to choose between treatment approaches.
Acceptable results achieved by the low-cost, low-dose DEKUB system in detection of kidney stone composition not only obviates a need for complicated imaging systems such as dual-energy computed tomography, but also provides an available and useful aid for physicians to choose between treatment approaches.New production routes for 99Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with 99Mo/99mTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for 99Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a99mTc elution efficiency of 55 ± 2% based on 3 executive elutions.A solid phase extraction based 177mLu-177Lu separation method has been investigated for its feasibility to be used in the radionuclide generator. The use of 2,2',2"-(10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid, (DOTAGA-anhydride) allowed grafting of DOTA (1,4,7,10-tetraazacyclododecane N,N',N″,N‴-tetraacetic acid) complex on the surface of commercially available amino propyl silica. The grafting of DOTA has been confirmed by several characterization techniques. The thermogravimetric analysis reveals that the 0.33 mmol DOTA groups have been grafted per gram of silica. However, during the Lu ion complexation, a 10 times lower Lu adsorption capacity of 0.03 mmol g-1 could be achieved under the studied reaction conditions. The results indicate that the grafting of DOTA on solid affects the Lu coordination and also influences the kinetics of Lu-DOTA complexation. The weak coordination resulted in high 177mLu leakage, while the unreacted DOTA groups interfer with the 177Lu release. This is evident from the 0.3% 177mLu leakage combined with a177Lu extraction efficiency of 25%. Overall, the results show a177mLu-177Lu separation with a maximum 177Lu/177mLu activity ratio of 25. But this is still far away from clinically acceptable activity ratio of 10,000 for which future work is recommended.Targeted Alpha Therapy (TAT) has demonstrated considerable promise in the treatment of a range of cancers in both preclinical and, more recently clinical research. In particular, work with the alpha-emitting radionuclide 225Ac has been effectively employed due to the relatively rapid decay cascade that leads to 4 alpha and 2 beta emissions. One limitation for TAT has been caused by access to the vital radionuclide. Traditionally, 225Ac has been sourced from thorium/actinium generators based on the alpha decay of stockpiles of 229Th. 229Th is itself the alpha-decay product from 233U. Due to proliferation issues associated with 233U, only three thorium/actinium generators have been reported in the literature, capable of supporting clinical research. This paper describes the construction and operation of a thorium/actinium radionuclide generator at the Canadian Nuclear Laboratories, capable of supporting preclinical and limited clinical research in the area of TAT. Thorium was recovered and purified by a combination of anion exchange and extraction chromatography from aged 233U stockpiles. A separation scheme for 225Ra and 225Ac has been developed, based upon the chemical composition of the thorium material to allow for regular, routine milkings capable of supplying up to 3.7 GBq (100 mCi) of radiochemically pure 225Ac annually. selleck chemical This routine separation is accomplished using a combination of anion exchange chromatography to separate Ac and Ra isotopes from Th and extraction chromatography employing TEVA and DGA-N resins to separate actinium from radium and breakthrough thorium.Research in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro). Such technique foresees the employment of the SPES ISOL facility to produce isobarically pure Radioactive Ion Beams (RIBs), obtained thanks to electromagnetic mass separation and collected on appropriate substrates. The latter are successively recovered and dissolved, allowing thus the chemical separation and harvesting of the nuclides of interest, free from any isotopic contaminant. link2 Although ISOLPHARM can be potentially employed for most of the routinely used medical radioisotopes, its innovation potential is better expressed considering its capability to provide carrier free unconventional nuclides, difficult to produce with state-of-art techniques, such as 111Ag, a β- emitter potentially interesting for therapeutic applications. Thus, in the framework of ISOLPHARM, INFN supported a two-years experiment, called ISOLPHARM_Ag, aimed at evaluating the feasibility of the production of a111Ag labelled radiopharmaceutical. The ISOL production yields are estimated by computing intensive Monte Carlo codes, that require an appropriate custom Information Technology infrastructure. The presented work is focused on the first part of the production chain including the capability to extract, ionize, and collect stable Ag beams with SPES technologies. MC calculations were used to estimate the expected 111Ag in-target yields, whereas experiments with stable Ag were performed to test the ionization, transport and collection of Ag beams.In this paper, X-ray tube is introduced as a potential alternative for radioisotope sources used in radiation based liquid-gas two-phase flowmeters. X-ray tubes have lots of advantages over the radioisotope sources such as having an adjustable emitting photon's energy, being safer from point of view of radiation health physics during the transportation of the source, having ability to generate a high flux photon beam, and etc. The proposed radiation based system in this study composes an X-ray tube with a tube voltage of 150 kV and a 2.5 mm aluminum filter as the radiation source and one sodium iodide crystal as the photon detector. A pipe was positioned between the X-ray tube and the detector. Two main flow regimes of annular and stratified with different void fractions were modelled inside the pipe. Artificial neural network model of multi-layer perceptron (MLP) was also used in this study for analyzing the obtained data. The output spectrum of sodium iodide detector with 150 samples was applied as the input of multi-layer perceptron network and void fraction was considered as its output. The root mean squared error of proposed measuring system was 4.13 which shows the X-ray tube can be implemented as a promising alternative for radioisotope in radiation based two phase flow meters.
In this study, an EGSnrc based Monte Carlo electron model was validated for an Elekta Synergy® 160-leaf Agility™ linear accelerator. A previously reported electron energy straggling model based on a Lévy distribution was tested against water tank measurements and a specially designed heterogeneous multi-layered phantom. This included PDD, beam profile, and relative output factor (ROF) comparison. All data passed a 2%/2mm gamma criterion with the exception of some ROF data, which showed discrepancies of up to 2.7%.

BEAMnrc was used to accurately model the linac that included the improved exit electron energy spectrum based on a Lévy distribution. The resulting BEAMnrc phase space files were used as sources in DOSXYZnrc for water tank dose distribution simulations consisting of 6 electron beam energies, 11 field sizes, and source-to-surface distances (SSDs) of 95 and 100cm. Evaluation parameters included PDD, dose profiles, and relative output factors, as well as phantom PDD and dose profile measurements with EBT3 gafchromic film.

The improved exit electron beam energy spectrum caused simulated data to comply with measured data (PPD's and dose profiles) with a 100% pass rate using a 2%/2mm criterion except for some relative output factors that deviated by 2.7% from measured ones in water. This was observed for both 95 and 100cm SSD data. Good agreement was obtained between film and simulation data within 2% in more than 90% of PDD and profile measurements.

The Lévy based energy straggling model for electron beams allowed for accurate electron beam characterization in water tank and phantom measurements.
The Lévy based energy straggling model for electron beams allowed for accurate electron beam characterization in water tank and phantom measurements.Lutetium-177 (DOTATATE) (177Lu; T1/2 6.7 days), a labelled β- and Auger-electron emitter, is widely used in treatment of neuroendocrine tumours. During performance of the procedure, staff and other patients can potentially receive significant doses in interception of the gamma emissions [113 keV (6.4%) and 208 keV (11%)] that are associated with the particle decays. While radiation protection and safety assessment are required in seeking to ensure practices comply with international guidelines, only limited published studies are available. The objectives of present study are to evaluate patient and occupational exposures, measuring ambient doses and estimating the radiation risk. The results, obtained from studies carried out in Riyadh over an 11 month period, at King Faisal Specialist Hospital and Research Center, concerned a total of 33 177Lu therapy patients. link3 Patient exposures were estimated using a calibrated Victoreen 451P survey meter (Fluke Biomedical), for separations of 30 cm, 100 cm and 300 cm, also behind a bed shield that was used during hospitalization of the therapy patients.
Homepage: https://www.selleckchem.com/products/elacridar-gf120918.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.