Notes
![]() ![]() Notes - notes.io |
Climate change and human activities have a strong impact on lakes and their catchments, so to understand ongoing processes it is fundamental to monitor environmental variables with a spatially well-distributed and high frequency network and efficiently share data. An effective sharing and interoperability of environmental information between technician and end-user fosters an in-depth knowledge of the territory and its critical environmental issues. In this paper, we present the approaches and the results obtained during the PITAGORA project (Interoperable Technological Platform for Acquisition, Management and Organization of Environmental data, related to the lake basin). PITAGORA was aimed at developing both instruments and data management, including pre-processing and quality control of raw data to ensure that data are findable, accessible, interoperable, and reusable (FAIR principles). The main results show that the developed instrumentation is low-cost, easily implementable and reliable, and can be applied to the measurement of diverse environmental parameters such as meteorological, hydrological, physico-chemical, and geological. The flexibility of the solutions proposed make our system adaptable to different monitoring purposes, research, management, and civil protection. The real time access to environmental information can improve management of a territory and ecosystems, safety of the population, and sustainable socio-economic development.Metalworking fluids (MWFs) are widely used to cool and lubricate metal workpieces during processing to reduce heat and friction. Extending a MWF's service life is of importance from both economical and ecological points of view. Knowledge about the effects of processing conditions on the aging behavior and reliable analytical procedures are required to properly characterize the aging phenomena. While so far no quantitative estimations of ageing effects on MWFs have been described in the literature other than univariate ones based on single parameter measurements, in the present study we present a simple spectroscopy-based set-up for the simultaneous monitoring of three quality parameters of MWF and a mathematical model relating them to the most influential process factors relevant during use. For this purpose, the effects of MWF concentration, pH and nitrite concentration on the droplet size during aging were investigated by means of a response surface modelling approach. Systematically varied model MWF fluidtive capability of the µ's-PLS-R model for pH was refined (10 wt% R²c = 0.998, R²p = 0.997). This highlights the relevance of the combined measurement of µa and µ's. Recognizing the synergistic nature of the effects of MWF concentration and pH on the droplet size is an important prerequisite for extending the service life of an MWF in the metalworking industry. The presented method can be applied as an in-process analytical tool that allows one to compensate for ageing effects during use of the MWF by taking appropriate corrective measures, such as pH correction or adjustment of concentration.The field-of-view (FOV) of compound eyes is an important index for performance evaluation. Most artificial compound eyes are optical, fabricated by imitating insect compound eyes with a fixed FOV that is difficult to adjust over a wide range. The compound eye is of great significance in the field of tracking high-speed moving objects. However, the tracking ability of a compound eye is often limited by its own FOV size and the reaction speed of the rudder unit matched with the compound eye, so that the compound eye cannot better adapt to tracking high-speed moving objects. Inspired by the eyes of many organisms, we propose a soft-array, surface-changing compound eye (SASCE). Taking soft aerodynamic models (SAM) as the carrier and an infrared sensor as the load, the basic model of the variable structure infrared compound eye (VSICE) is established using an array of infrared sensors on the carrier. The VSICE model is driven by air pressure to change the array surface of the infrared sensor. Then, the spatial position of each sensor and its viewing area are changed and, finally, the FOV of the compound eye is changed. SCH772984 datasheet Simultaneously, to validate the theory, we measured the air pressure, spatial sensor position, and the FOV of the compound eye. When compared with the current compound eye, the proposed one has a wider adjustable FOV.To improve the reliability of Global Positioning System (GPS) signal extraction, the traditional variational mode decomposition (VMD) method cannot determine the number of intrinsic modal functions or the value of the penalty factor in the process of noise reduction, which leads to inadequate or over-decomposition in time series analysis and will cause problems. Therefore, in this paper, a new approach using improved variational mode decomposition and wavelet packet transform (IVMD-WPT) was proposed, which takes the energy entropy mutual information as the objective function and uses the grasshopper optimisation algorithm to optimise the objective function to adaptively determine the number of modal decompositions and the value of the penalty factor to verify the validity of the IVMD-WPT algorithm. We performed a test experiment with two groups of simulation time series and three indicators root mean square error (RMSE), correlation coefficient (CC) and signal-to-noise ratio (SNR). These indicators were used to evaluate the noise reduction effect. The simulation results showed that IVMD-WPT was better than the traditional empirical mode decomposition and improved variational mode decomposition (IVMD) methods and that the RMSE decreased by 0.084 and 0.0715 mm; CC and SNR increased by 0.0005 and 0.0004 dB, and 862.28 and 6.17 dB, respectively. The simulation experiments verify the effectiveness of the proposed algorithm. Finally, we performed an analysis with 100 real GPS height time series from the Crustal Movement Observation Network of China (CMONOC). The results showed that the RMSE decreased by 11.4648 and 6.7322 mm, and CC and SNR increased by 0.1458 and 0.0588 dB, and 32.6773 and 26.3918 dB, respectively. In summary, the IVMD-WPT algorithm can adaptively determine the number of decomposition modal functions of VMD and the optimal combination of penalty factors; it helps to further extract effective information for noise and can perfectly retain useful information in the original time series.Diverse sensor-based technologies can be used to track (older and frail) people's movements and behaviors in order to detect anomalies and emergencies. Using several ambient sensors and integrating them into an assisting ambient system allows for the early identification of emergency situations and health-related changes. Typical examples are passive infrared sensors (PIR), humidity and temperature sensors (H&T) as well as magnetic sensors (MAG). So far, it is not known whether and to what extent these three specific sensor types are perceived and accepted differently by future users. Therefore, the present study analyzed the perception of benefits and barriers as well as acceptance of these specific sensor-based technologies using an online survey (reaching N=312 German participants). The results show technology-related differences, especially regarding the perception of benefits. Furthermore, the participants estimated the costs of these sensors to be higher than they are, but at the same time showed a relatively high willingness to pay for the implementation of sensor-based technologies in their home environment. The results enable the derivation of guidelines for both the technical development and the communication and information of assisting sensor-based technologies and systems.The basic technology that will determine the expansion of the technical capabilities of fifth generation cellular systems is a massive multiple-input-multiple-output. Therefore, assessing the influence of the antenna beam orientations on the radio channel capacity is very significant. In this case, the effects of mismatching the antenna beam directions are crucial. In this paper, the methodology for evaluating changes in the received signal power level due to beam misalignment for the transmitting and receiving antenna systems is presented. The quantitative assessment of this issue is presented based on simulation studies carried out for an exemplary propagation scenario. For non-line-of-sight (NLOS) conditions, it is shown that the optimal selection of the transmitting and receiving beam directions may ensure an increase in the level of the received signal by several decibels in relation to the coaxial position of the beams. The developed methodology makes it possible to analyze changes in the radio channel capacity versus the signal-to-noise ratio and distance between the transmitter and receiver at optimal and coaxial orientations of antenna beams for various propagation scenarios, considering NLOS conditions. In the paper, the influence of the directional antenna use and their direction choices on the channel capacity versus SNR and the distance between the transmitter and receiver is shown.This paper presents a wearable device, fitted on the waist of a participant that recognizes six activities of daily living (walking, walking upstairs, walking downstairs, sitting, standing, and laying) through a deep-learning algorithm, human activity recognition (HAR). The wearable device comprises a single-board computer (SBC) and six-axis sensors. The deep-learning algorithm employs three parallel convolutional neural networks for local feature extraction and for subsequent concatenation to establish feature fusion models of varying kernel size. By using kernels of different sizes, relevant local features of varying lengths were identified, thereby increasing the accuracy of human activity recognition. Regarding experimental data, the database of University of California, Irvine (UCI) and self-recorded data were used separately. The self-recorded data were obtained by having 21 participants wear the device on their waist and perform six common activities in the laboratory. These data were used to verify the proposed deep-learning algorithm on the performance of the wearable device. The accuracy of these six activities in the UCI dataset and in the self-recorded data were 97.49% and 96.27%, respectively. The accuracies in tenfold cross-validation were 99.56% and 97.46%, respectively. The experimental results have successfully verified the proposed convolutional neural network (CNN) architecture, which can be used in rehabilitation assessment for people unable to exercise vigorously.Applications of terahertz time-domain spectroscopy (THz-TDS) in the fields of chemistry and biomedicine have recently received increased attention. Specifically, THz-TDS is particularly effective for the identification of alkaloid molecules, because it can distinguish the vibration types of base molecules in the THz band and provide a direct characteristic spectrum for the configuration and conformation of biomolecules. However, when THz-TDS technology is used to identify alkaloid molecules, most of them are concentrated in the 0.1-3.0 THz band, limiting the amount of information that can be obtained. In this work, a wide-spectrum THz-TDS system was independently built to explore the absorption spectra of uracil and its 5-substituents in the range of 1.3-6.0 THz. We found that, in the THz band, uracil and its 5-substituents have similar absorption peaks near 4.9 and 3.3 THz, while the 5-substituents have an additional absorption peak in the range of 1.5-2.5 THz. This absorption peak is red-shifted as the relative atomic mass of the 5-substituted atoms increases.
Here's my website: https://www.selleckchem.com/products/sch772984.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team