Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We studied a high-speed electro-absorption optical modulator (EAM) of a Ge layer evanescently coupled with a Si waveguide (Si WG) of a lateral pn junction for high-bandwidth optical interconnect. By decreasing the widths of selectively grown Ge layers below 1 µm, we demonstrated a high-speed modulation of 56 Gbps non-return-to-zero (NRZ) and 56 Gbaud pulse amplitude modulation 4 (PAM4) EAM operation in the C-band wavelengths, in contrast to the L-band wavelengths operations in previous studies on EAMs of pure Ge on Si. From the photoluminescence and Raman analyses, we confirmed an increase in the direct bandgap energy for such a submicron Ge/Si stack structure. The operation wavelength for the Ge/Si stack structure of a Ge/Si EAM was optimized by decreasing the device width below 1-µm and setting the post-growth anneal condition, which would contribute to relaxing the tensile-strain of a Ge layer on a Si WG and broadening the optical bandwidths for Franz-Keldysh (FK) effect with SiGe alloy formation.Smart windows for sunlight control play an important role in modern green buildings. Electrically-controllable light microshutters provide a promising solution for smart windows. However, most of reported microshutters work under on/off binary mode. In this work, an electrothermally actuated microshutter that can achieve analog light control is proposed. The microshutter consists of an array of electrothermal Al/SiO2 bimorph cantilever plates suspended over a through-silicon cavity. The device is fabricated by a combination of surface- and bulk- micromachining processes. Test experiments show that for a single microshutter pixel, the device opening ratio can be tuned continuously from 78.6% (Open state, 0 V) all the way down to nearly 0% (Close state, 8 V) with a small hysteresis. For the entire array of 2 × 5 microshutters, the light transmission ratio varies continuously from 63.3% to 3.6% when the applied voltage is increased from 0 to 7.3 V. Furthermore, the response time, long-term reliability and window-like function of the microshutter are tested.We have successfully demonstrated a hybrid-integrated 400-Gb/s (4 × 100 Gb/s) CWDM4 PAM-4 receiver optical sub-assembly (ROSA) with a bandwidth-improved multilayer evaluation board. The proposed ROSA offers packaging simplification through passive optical alignment assembly of main components. In addition, we have proposed a structure to mitigate the bandwidth limitation issue caused by the typical edge connector mounting on the multilayer board, when needed bandwidth exceeds ∼20 GHz. With the bandwidth-improved multilayer board, the 3-dB bandwidth of the ROSA was observed to be >35.7 GHz and its receiver sensitivity was successfully measured to be less then -10 dBm at FEC limit, bit error rate of 2.4e-4, for all channels.We show that Einstein's relativistic mirror with long (hundreds of µm) propagation distance and controllable propagation velocity can be implemented in the form of a dense free carrier front generated by multiphoton absorption of tilted-pulse-front femtosecond laser pulses in a dielectric or semiconductor medium. The velocity control is achieved by varying the pulse front tilt angle. Simulations demonstrate that such fronts can serve as efficient Doppler-type converters of terahertz pulses. In particular, the pulse reflected from a front, generated by three-photon absorption of a Tisapphire laser in ZnS, can exhibit strong (up to more than an order of magnitude) pulse compression and spectrum broadening without a noticeable amplitude change. The proposed technique may be used to convert strong low-frequency terahertz pulses, generated by optical rectification of tilted-pulse-front laser pulses, to desirable temporal and spectral characteristics for a variety of applications.Photonic crystals coated on the surface of scintillators can be used to improve the light extraction efficiency by partially eliminating the total internal reflection. However, the traditional self-assembly technique is not applicable to the hygroscopic scintillators. In the present investigation, we have proposed an efficient method to prepare the photonic crystals on the surface of CsI(Na) hygroscopic scintillators by a combination of the self-assemble of polystyrene (PS) microspheres and the subsequent dry-transfer procedure. For obtaining optimal parameters of photonic crystals, the light output of the CsI(Na) sample is enhanced by 43.2% compared to the reference sample without photonic crystals under the excitation of alpha particles from 241Am source. The energy resolution is improved from 11.2% to 7.8%. This technique based on the dry-transfer procedure has a promising prospect in the preparation of photonic crystals for hygroscopic scintillators.Resonance Raman scattering can be used to investigate the ground and excited state information of carotenoid. It is known that the Dushinsky rotation can significantly influence the resonant Raman intensity of β-carotene (β-car). The excited state geometry revealed by the double components feature of the C = C stretching vibrational modes and the environmental dependence of the Raman intensity for each component remain unknown. We explore the influence of environmental factors on the relative intensity of these two C = C stretching vibration modes and perform two-dimensional resonance Raman correlation analysis to reveal the changes on β-car excited state geometry. The results show that the relative wavelength difference between the 0-0 absorption and the excitation is the key factor that decides the intensity ratio of the two components and that the intensity of each mode is modulated by environmental factors. This modulation is closely related to the excited state geometry and dynamics, effective conjugation length, and electron-phonon coupling constant. It also shows that the asynchronous cross-peaks in the two-dimensional resonance Raman correlation spectrum (2DRRCOS) can effectively characterize the degree of the varied electron-phonon coupling with the changing conditions. These results are not only complementary to the research on the excited states of carotenoids but also applicable to investigate the environmental dependence of Raman intensity for a lot of π-conjugated molecules.We introduce a new X-ray speckle-vector tracking method for phase imaging, which is based on the wavelet transform. Theoretical and experimental results show that this method, which is called wavelet-transform-based speckle-vector tracking (WSVT), has stronger noise robustness and higher efficiency compared with the cross-correlation-based method. In addition, the WSVT method has the controllable noise reduction and can be applied with fewer scan steps. These unique features make the WSVT method suitable for measurements of large image sizes and phase shifts, possibly under low-flux conditions, and has the potential to broaden the applications of speckle tracking to new areas requiring faster phase imaging and real-time wavefront sensing, diagnostics, and characterization.The rapid development of optoelectronic components has demanded high-speed drilling for alumina ceramic substrate. However, the existing drilling speed cannot meet the demand due to the limitation of conventional laser system and drilling method. In this paper, by adopting a sub-microsecond pulsed thin disk laser that based on a multi-pass pumping module, a laser system with a pulse energy of 37.4 mJ and a peak power of 103.8 kW is developed, which helps us to achieve high processing efficiency. In addition, experimental and theoretical analysis suggest the positive defocusing method can be used to control the hole taper angle, and micro-holes with a hole diameter difference less than 6% is realized, which helps us to achieve high processing quality. Ultimately, it is reported that the drilling speed for micro-holes with a diameter of ∼150 µm reaches 30 holes per second, and for micro-holes with a diameter of ∼100 µm reaches as high as 66 holes per second. The performance of the sub-microsecond pulsed thin disk laser presented in this paper provides a reference in the field of high-speed laser processing.We demonstrate quantum detector tomography of a commercial 2×2 array of superconducting nanowire single photon detectors. We show that detector-specific figures of merit including efficiency, dark-count and cross-talk probabilities can be directly extracted, without recourse to the underlying detector physics. These figures of merit are directly identified from just four elements of the reconstructed positive operator valued measure (POVM) of the device. We show that the values for efficiency and dark-count probability extracted by detector tomography show excellent agreement with independent measurements of these quantities, and we provide an intuitive operational definition for cross-talk probability. Finally, we show that parameters required for the reconstruction must be carefully chosen to avoid oversmoothing the data.In this paper, we demonstrate a 570.0 MHz harmonically mode-locked all-polarization-maintaining Ho-doped fiber laser based on semiconductor saturable absorbed mirror. Firstly, the laser operates in the 15.4 MHz fundamental mode-locked soliton regime, emitting 2051.5 nm, 1.62 ps soliton pulse without Kelly sidebands. And then, the stable 37th-order harmonic mode-locked soliton with maximum repetition rate up to 570.0 MHz at 2053nm is generated. Moreover, colorful soliton rain behaviors are also discussed.Rapid and accurate diagnosis of bacterial infections resistant to multiple antibiotics requires development of new bio-sensors for differentiated detection of multiple targets. This work demonstrates 7x multiplexed detection for antibiotic-resistance bacterial screening on an optofluidic platform. We utilize spectrally multiplexed multi-spot excitation for simultaneous detection of nucleic acid strands corresponding to bacterial targets and resistance genes. This is enabled by multi-mode interference (MMI) waveguides integrated in an optofluidic device. We employ a combinatorial three-color labeling scheme for the nucleic acid assays to scale up their multiplexing capability to seven different nucleic acids, representing three species and four resistance genes.Compared with existing depth cameras, such as RGB-D, RealSense and Kinect, stripe-based structured light (SL) has the potential for micrometer-level 3D measurement; this can be attributed to its higher coding capacity. selleck chemicals While surface texture, high-reflective region, and occlusion remain some of the main sources leading to degraded reconstruction quality in complex objects, methods that are only based on SL cannot completely solve such problems in complex object reconstruction. In this paper, we developed an advanced fusion strategy for the reconstruction of complex objects in micrometer-level 3D measurement. This includes solving the above-mentioned inherent problems of a stripe-based SL system with the aid of photometric stereo (PS). Firstly, to improve the robustness of decoding and eliminate the effects of noise and occlusion on stripe detection, a novel scene-adaptive decoding algorithm based on a binary tree was proposed. Further, a robust and practical calibration method for area light sources in the PS system, which utilizes the absolute depth information from SL system, was introduced.
Here's my website: https://www.selleckchem.com/products/deferiprone.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team