NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The judgement regarding categorisation within game.
5% less than that for bi-LSTM NLE.We experimentally demonstrate the post-compression of radially polarized 25 fs pulses at 800 nm central wavelength in a multiple thin plate arrangement for the first time, to the best of our knowledge. Sub-7 fs pulses with 90 µJ energy were obtained after dispersion compensation, corresponding to a compression factor of more than 3.5. Preservation of radial polarization state was confirmed by polarized intensity distribution measurements. Linear projections of the radially polarized pulses were also fully characterized in the temporal domain.In this manuscript, a data-defined naïve Bayes (DNB)-based decision scheme for nonlinear mitigation is presented for an orbital angular momentum (OAM) mode-division multiplexed optical fiber communication system. Due to the inherent nonlinearity characteristic of opto-electronic devices, the strong nonlinear impairments are deemed inevitable in OAM mode-division multiplexed transmission, leading to severely nonlinear effects. A DNB algorithm based on the prior probability distribution is adopted to mitigate the strong device nonlinearity of the OAM communication system, which is hard to solve using the conventional approaches due to the complex theoretical model of opto-electronic devices. An experiment using eight-mode OAM with a 32GBaud Nyquist QPSK signal optical fiber communication system is carried out with ring core fiber (RCF) transmission over 10 km to verify the effectiveness of the proposed scheme. The experimental results demonstrate that the nonlinear effects on OAM transmission can be effectively mitigated using a DNB-based decision with a bit error rate (BER) reduction of at most 66%. Moreover, compared with other nonlinear decision algorithms based on machine learning, such as support vector machine (SVM) or k-nearest neighbors (KNN), the digital signal processing complexity of the DNB algorithm is significantly reduced.It is known that the Kramers-Kronig (KK) relation between real and imaginary parts of the optical susceptibility in the frequency domain can also be realized in the space domain, as first proposed in [Nat. Photonics9(7), 436 (2015)10.1038/nphoton.2015.106]. We here study a mechanism to implement spatial KK relations in a cold atomic sample and use it to control unidirectional reflectionless for probe light incident from either the left or right side of the sample at will. In our model, the complex frequency dependent atomic susceptibility is mapped into a spatially dependent one, employing a far-detuned driving field of intensity linearly varied in space. The reflection of an incident light from one side of the sample can then be set to vanish over a specific frequency band directly by changing the driving field parameters, such as its intensity and frequency. Also, by incorporating the Bragg scattering into the spatial KK relation, the reflectivity from the opposite side of the sample, though typically small for realistic atomic densities, can be made to increase to improve the reflectivity contrast. The present scheme bears potentials for all-optical network applications that require controllable unidirectional light propagation.Although deeper convolutional neural networks (CNNs) generally obtain better performance on classification tasks, they incur higher computation costs. To address this problem, this study proposes the optronic convolutional neural network (OPCNN) in which all computation operations are executed in optics, and data transmission and control are executed in electronics. In OPCNN, we implement convolutional layers with multi input images by the lenslet 4f system, downsampling layers by optical-strided convolution and obtaining nonlinear activation by adjusting the camera's curve and fully connected layers by optical dot product. The OPCNN demonstrates good performance on the classification tasks in simulations and experiments and achieves better performance than other current optical convolutional neural networks by comparison due to the more complex architecture. The scalability of OPCNN contributes to building deeper networks when facing complicated datasets.Recently, optically-transparent metasurface based on indium tin oxide (ITO) film has attracted wide attention due to its remarkable optical and electromagnetic characteristics. However, most previous researches on the ITO film mainly focus on the absorption because of its prominent loss-resistance property, but neglecting the further exploration on programmable functions. Here, we present a programmable metasurface based on an optically-transparent ITO glass, on which varactors are integrated to achieve flexible amplitude manipulation range of about 25 dB. More importantly, the presented programmable design can be applied for direct modulation on the carrier incident wave with the desired pre-designed analog wave-form. Within the 10 MHz modulation speed, both programmable amplitude manipulation and analog information modulation are demonstrated in the measurements, showing good agreement with theoretical analysis and simulations. Combining both optical transparency and programmable modulation capability, the presented metasurface will promote the potential applications in wireless communication, internet of things and other smart scenarios.The two-dimensional transition metal dichalcogenides (TMDCs) have been considered as promising candidates for developing a new generation of optoelectronic devices. Accordingly, investigations of exciton dynamics are of great importance for understanding the physics and the performance of devices based on TMDCs. Herein, after exposure to ambient environment for six months, monolayer tungsten disulfide (WS2) shows formation of localized states. Photoluminescence (PL) and time-resolved PL (TRPL) spectra demonstrate that these localized states have significant impacts on the exciton dynamics, including energy states filling, thermal activation and redistribution, and the decay behavior of excitons. These observations not only enrich the understanding for localized states and correlated exciton dynamics of aged monolayer WS2, but also reveal a possible approach to modulate the optical properties of TMDCs via the aging process.The electronic state and nonlinear optical properties in the Y-shaped quantum dots has been theoretically investigated by adjusting the shape with the applied electric field. Within the effective-mass approximation, the energy levels and the wave functions of the system are obtained by means of the finite difference method. The results show that both the strength or the in-plane orientation of external electric field and the shape of regulable Y-shaped quantum dots have a significant influence on the electronic state, optical absorption coefficients and the refractive index changes.We study the absorptivity of coupled metamaterial resonators in the mid-infrared range. We consider resonators supporting either a bright mode or a dark mode, introducing an additional degree of freedom for spectral modulation relative to bright modes alone. In a dark-bright coupled resonator system, we demonstrate tunable spectral splitting by changing the separation between resonators. We show via coupled mode theory that resonator separation can be mapped to coupling constant. We further introduce a dark-dark coupled resonator system, which gives rise to an emissive bright mode only in the presence of inter-resonator coupling. The dark-dark system yields a broadband emissivity that decays to zero exponentially with resonator separation, providing a design method for strong thermal emissivity control.We demonstrate that Kerr lens modelocking is well-suited for operating an ultrafast thin-disk laser with intra-oscillator high harmonic generation (HHG) in the 100-fs pulse duration regime. Exploiting nearly the full emission bandwidth of the gain material YbYAG, we generate 105-fs pulses with an intracavity peak power of 365 MW and an intracavity average power of 470 W. selleck kinase inhibitor We drive HHG in argon with a peak intensity of ∼7⋅1013 W/cm2 at a repetition rate of 11 MHz. Extreme-ultraviolet (XUV) light is generated up to the 31st harmonic order (H31) at 37 eV, with an average power of ∼0.4 µW in H25 at 30 eV. This work presents a considerable increase in performance of XUV sources based on intra-oscillator HHG and confirms that this approach is a promising technology for simple and portable XUV sources at MHz repetition rates.In this article, the author leverages the concept of "input impedance" to determine in a proper manner the collective resonances of infrared devices based on square arrays of micro-dipoles, commonly obtained by the scattered field of devices under illumination. With the aid of finite-element simulations, the resistive and capacitive nature of the odd and even resonant modes of individual micro-dipoles is first unveiled. Subsequently, the micro-dipoles are incorporated into an array with lattice parameters (ax, ay), and the dependence of the emerging collective odd and even resonant modes, on the transverse and longitudinal dipolar interaction, is evaluated. The opposite wavelength shift of these modes is unveiled and the physical mechanisms behind their behavior are discussed. By analyzing the absorbance spectra of the micro-antenna arrays, the equivalence of optical resonances counterpart, in the short and open-circuit configurations, with the odd and even modes is presented. Finally, the effect on the array's performance that results from introducing highly resistive nano-bolometers is optimized by exploiting the natural high-resistance of the collective even modes.Three different types of strain and temperature sensors based on negative curvature hollow core fiber (NCHCF) are proposed. Each sensor is produced by splicing a small section of the NCHCF between two sections of single mode fiber. Different types of interferometers are obtained simply by changing the splicing conditions. The first sensor consists on a single Fabry-Perot interferometer (FPI). The remaining two configurations are attained with the same sensing structure, depending on its position in relation to the interrogation setup. Thus, a double FPI or a hybrid sensor, the latter being composed by an FPI and a Michelson interferometer, are formed. The inline sensors are of submillimeter size, thus enabling nearly punctual measurements.Time multiplexing is a super-resolution technique that sacrifices time to overcome the resolution reduction obtained because of diffraction. There are many super resolution methods based on time multiplexing, but all of them require a priori knowledge of the time changing encoding mask, which is projected on the object and used to encode and decode the high-resolution information. In this paper, we present a time multiplexing technique that does not require the a priori knowledge on the projected encoding mask. First, the theoretical concept of the technique is demonstrated; then, numerical simulations and experimental results are presented.We provide a revised figure and the corrected related expressions of our previous publication [Opt. Express29(2), 1023(2021)10.1364/OE.414113].We theoretically analyze the robustness to potential distortion of mode-locking in a harmonic cavity nanolaser sustaining oscillation of Hermite-Gaussian modes. Different types of imperfections of the harmonic potential that create the Hermite-Gaussian modes are considered the non-parabolicity of the potential and the possible random errors in the shape of the potential. The influence of the different laser parameters, including the Henry factors of the gain medium and the saturable absorber, on the robustness of the mode-locked regime is discussed in detail.
Here's my website: https://www.selleckchem.com/EGFR(HER).html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.