Notes
Notes - notes.io |
3 s to the observed lag of 2.2 s we obtain 2.5 s, which is the time between neural activity increase and BOLD increase, termed neuro-BOLD coupling. Note, this time window for neuro-BOLD coupling in awake humans is surprisingly of similar size as in awake head-fixed adult mice (Mateo et al., 2017).Abacus, which represents numbers via a visuospatial format, is a traditional device to facilitate arithmetic operations. Skilled abacus users, who have acquired the ability of abacus-based mental calculation (AMC), can perform fast and accurate calculations by manipulating an imaginary abacus in mind. Due to this extraordinary calculation ability in AMC users, there is an expanding literature investigating the effects of AMC training on cognition and brain systems. This review study aims to provide an updated overview of important findings in this fast-growing research field. Here, findings from previous behavioral and neuroimaging studies about AMC experts as well as children and adults receiving AMC training are reviewed and discussed. Taken together, our review of the existing literature suggests that AMC training has the potential to enhance various cognitive skills including mathematics, working memory and numerical magnitude processing. Besides, the training can result in functional and anatomical neural changes that are largely located within the frontal-parietal and occipital-temporal brain regions. Some of the neural changes can explain the training-induced cognitive enhancements. Still, caution is needed when extend the conclusions to a more general situation. Implications for future research are provided.Blood-brain barrier opening (BBBO) with pulsed Focused Ultrasound (pFUS) and microbubbles (MB) has received increasing interest as a method for neurotherapeutics of the central nervous system. In general, conventional MRI [i.e., T2w, T2∗w, gadolinium (Gd) enhanced T1w] is used to monitor the effects of pFUS+MB on BBBO and/or assess whether sonication results in parenchymal damage. This study employed multimodal MRI techniques and 18F-Fludeoxyglucose (FDG) PET to evaluate the effects of single and multiple weekly pFUS+MB sessions on morphology and glucose utilization levels in the rat cortex and hippocampus. pFUS was performed with 0.548 MHz transducer with a slow infusion over 1 min of OptisonTM (5-8 × 107 MB) in nine focal points in cortex and four in hippocampus. During pFUS+MB treatment, Gd-T1w was performed at 3 T to confirm BBBO, along with subsequent T2w, T2∗w, DTI and glucose CEST (glucoCEST)-weighted imaging by high field 9.4 T and compared with FDG-PET and immunohistochemistry. Animals receiving a single pFUS+MB exhibited minimal hypointense voxels on T2∗w. Brains receiving multiple pFUS+MB treatments demonstrated persistent T2w and T2∗ abnormalities associated with changes in DTI and glucoCEST when compared to contralateral parenchyma. Decreased glucoCEST contrast was substantiated by FDG-PET in cortex following multiple sonications. Immunohistochemistry showed significantly dilated vessels and decreased neuronal glucose transporter (GLUT3) expression in sonicated cortex and hippocampus without changes in neuronal counts. These results suggest the importance to standardize MRI protocols in concert with advanced imaging techniques when evaluating long term effects of pFUS+MB BBBO in clinical trials for neurological diseases.Interleukin (IL)-33 belongs to a novel chromatin-associated cytokine newly recognized by the IL-1 family, and its specific receptor is the orphan IL-1 receptor (ST2). Cumulative evidence suggests that IL-33 plays a crucial effect on the pathological changes and pathogenesis of central nervous system (CNS) diseases and injuries, such as recurrent neonatal seizures (RNS). However, the specific roles of IL-33 and its related molecular mechanisms in RNS remain confused. In the present study, we investigated the protein expression changes and co-localized cell types of IL-33 or ST2, as well as the effect of IL-33 on RNS-induced neurobehavioral defects, weight loss, and apoptosis. Moreover, an inhibitor of IL-33, anti-IL-33 was performed to further exploited underlying mechanisms. We found that administration of IL-33 up-regulated the expression levels of IL-33 and ST2, and increased the number of its co-localization with Olig-2-positive oligodendrocytes and NeuN-positive neurons at 72 h post-RNS. Noteworthily, RNS-induced neurobehavioral deficits, bodyweight loss, and spatial learning and memory impairment, as well as cell apoptosis, were reversed by IL-33 pretreatment. Additionally, the increase in IL-1β and TNF-α levels, up-regulation of ER stress, as well as a decrease in anti-apoptotic protein Bcl-2 and an increase in pro-apoptotic protein CC-3 induced by RNS are prevented by administration of IL-33. Moreover, IL-33 in combination with Anti-IL-33 significantly inverted the effects of IL-33 or Anti-IL-33 alone on apoptosis, ER stress, and inflammation. Collectively, these data suggest that IL-33 attenuates RNS-induced neurobehavioral disorders, bodyweight loss, and spatial learning and memory deficits, at least in part through mechanisms involved in inhibition of apoptosis, ER stress, and neuro-inflammation.Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease that affects both central and peripheral nervous system, leading to the degeneration of motor neurons, which eventually results in muscle atrophy, paralysis, and death. Sleep disturbances are common in patients with ALS, leading to even further deteriorated quality of life. Investigating methods to potentially assess sleep and rest disturbances in animal models of ALS is thus of crucial interest. We used an automated home cage monitoring system (DVC®) to capture irregular activity patterns that can potentially be associated with sleep and rest disturbances and thus to the progression of ALS in the SOD1G93A mouse model. DVC® enables non-intrusive 24/7 long term animal activity monitoring, which we assessed together with body weight decline and neuromuscular function deterioration measured by grid hanging and grip strength tests in male and female mice from 7 until 24 weeks of age. We show that as the ALS progresses over time in SOD1G93A mice, activity patterns start becoming irregular, especially during day time, with frequent activity bouts that are neither observed in control mice nor in SOD1G93A at a younger age. The increasing irregularities of activity pattern are quantitatively captured by designing a novel digital biomarker, referred to as Regularity Disruption Index (RDI). We show that RDI is a robust measure capable of detecting home cage activity patterns that could be related to rest/sleep-related disturbances during the disease progression. Moreover, the RDI rise during the early symptomatic stage parallels grid hanging and body weight decline. The non-intrusive long-term continuous monitoring of animal activity enabled by DVC® has been instrumental in discovering novel activity patterns potentially correlated, once validated, with sleep and rest disturbances in the SOD1G93A mouse model of the ALS disease.Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.Progressive supranuclear palsy (PSP) is a neurodegenerative disease based on four-repeat tauopathy pathology. Currently, this entity is not fully recognized in the context of pathogenesis or clinical examination. This review evaluates the association between neuroinflammation and microglial activation with the induction of pathological cascades that result in tauopathy pathology and the clinical manifestation of PSP. Multidimensional analysis was performed by evaluating genetic, biochemical, and neuroimaging biomarkers to determine whether neurodegeneration as an effect of neuroinflammation or neuroinflammation is a consequence of neurodegeneration in PSP. To the best of our knowledge, this review is the first to investigate PSP in this context.
This study examined the central auditory processing (CAP) assessment results of adults between 45 and 85 years of age with probable pre-clinical Alzheimer's disease - i.e., individuals with subjective memory complaints (SMCs) as compared to those who were not reporting significant levels of memory complaints (non-SMCs). Nintedanib in vivo It was hypothesized that the SMC group would perform significantly poorer on tests of central auditory skills compared to participants with non-SMCs (control group).
A total of 95 participants were recruited from the larger Western Australia Memory Study and were classified as SMCs (
= 61; 20 males and 41 females, mean age 71.47 ±7.18 years) and non-SMCs (
= 34; 10 males, 24 females, mean age 68.85 ±7.69 years). All participants completed a peripheral hearing assessment, a CAP assessment battery including Dichotic Digits, Duration Pattern Test, Dichotic Sentence Identification, Synthetic Sentence Identification with Ipsilateral Competing Message (SSI-ICM) and the Quick-Speech-in-Noise,ontrols. The poor CAP in SMC individuals may result in a higher cost to their finite pool of cognitive resources. The CAP results provide yet another biomarker that supports the hypothesis that SMCs may be a primary indication of neuropathological changes in the brain. Longitudinal follow up of individuals with SMCs, and decreased CAP abilities should inform whether this group is at higher risk of developing dementia as compared to non-SMCs and those SMC individuals without CAP difficulties.Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by deficits in communication, impaired social interaction, and repetitive or restricted interests and behaviors. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala of mice after postnatal valproic acid exposure. However, the specific role of nNOS downregulation in mice remains to be elucidated. Herein, we investigated the behavioral alternations of naive mice with a recombinant adeno-associated virus (rAAV)-mediated knockdown of nNOS in a comprehensive test battery, including the social interaction, marble burying, self-grooming, and open field tests. Further, the electrophysiological and surface expression changes induced by nNOS deficiency of the basolateral amygdala in these animals were examined. Our results show that nNOS knockdown displayed typical symptoms of ASD-like behaviors, such as reduced social interaction and communication, elevated stereotypes, and anxiety in mice.
My Website: https://www.selleckchem.com/products/BIBF1120.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team