Notes
![]() ![]() Notes - notes.io |
The complexity of intracellular signalling requires both a diversity of molecular players and the sequestration of activity to unique compartments within the cell. Recent findings on the role of liquid-liquid phase separation provide a distinct mechanism for the spatial segregation of proteins to regulate signalling pathway crosstalk. Here, we discover that DACT1 is induced by TGFβ and forms protein condensates in the cytoplasm to repress Wnt signalling. These condensates do not localize to any known organelles but, rather, exist as phase-separated proteinaceous cytoplasmic bodies. The deletion of intrinsically disordered domains within the DACT1 protein eliminates its ability to both form protein condensates and suppress Wnt signalling. Isolation and mass spectrometry analysis of these particles revealed a complex of protein machinery that sequesters casein kinase 2-a Wnt pathway activator. We further demonstrate that DACT1 condensates are maintained in vivo and that DACT1 is critical to breast and prostate cancer bone metastasis.Animals often need to signal to attract mates and behavioural signalling may impose substantial energetic and fitness costs to signallers. Consequently, individuals often strategically adjust signalling effort to maximize the fitness payoffs of signalling. An important determinant of these payoffs is individual state, which can influence the resources available to signallers, their likelihood of mating and their motivation to mate. However, empirical studies often find contradictory patterns of state-based signalling behaviour. For example, individuals in poor condition may signal less than those in good condition to conserve resources (ability-based signalling) or signal more to maximize short-term reproductive success (needs-based signalling). To clarify this relationship, I systematically searched for published studies examining animal sexual signalling behaviour in relation to six aspects of individual state age, mated status, attractiveness, body size, condition and parasite load. Across 228 studies and 147 species, individuals (who were predominantly male) invested more into behavioural signalling when in good condition. Overall, this suggests that animal sexual signalling behaviour is generally honest and ability-based. However, the magnitude of state-dependent plasticity was small and there was a large amount of between-study heterogeneity that remains unexplained.Lead halide perovskites exhibit structural instabilities and large atomic fluctuations thought to impact their optical and thermal properties, yet detailed structural and temporal correlations of their atomic motions remain poorly understood. Here, these correlations are resolved in CsPbBr3 crystals using momentum-resolved neutron and X-ray scattering measurements as a function of temperature, complemented with first-principles simulations. We uncover a striking network of diffuse scattering rods, arising from the liquid-like damping of low-energy Br-dominated phonons, reproduced in our simulations of the anharmonic phonon self-energy. These overdamped modes cover a continuum of wave vectors along the edges of the cubic Brillouin zone, corresponding to two-dimensional sheets of correlated rotations in real space, and could represent precursors to proposed two-dimensional polarons. Further, these motions directly impact the electronic gap edge states, linking soft anharmonic lattice dynamics and optoelectronic properties. These results provide insights into the highly unusual atomic dynamics of halide perovskites, relevant to further optimization of their optical and thermal properties.The delayed behavioral response to chronic antidepressants depends on dynamic changes in the hippocampus. It was suggested that the antidepressant protein p11 and the chromatin remodeling factor SMARCA3 mediate this delayed response by inducing transcriptional changes in hippocampal neurons. However, what target genes are regulated by the p11/SMARCA3 complex to mediate the behavioral response to antidepressants, and what cell type mediates these molecular changes remain unknown. Here we report that the p11/SMARCA3 complex represses Neurensin-2 transcription in hippocampal parvalbumin-expressing interneurons after chronic treatment with Selective Serotonin Reuptake Inhibitors (SSRI). The behavioral response to antidepressants requires upregulation of p11, accumulation of SMARCA3 in the cell nucleus, and a consequent repression of Neurensin-2 transcription in these interneurons. We elucidate a functional role for p11/SMARCA3/Neurensin-2 pathway in regulating AMPA-receptor signaling in parvalbumin-expressing interneurons, a function that is enhanced by chronic treatment with SSRIs. These results link SSRIs to dynamic glutamatergic changes and implicate p11/SMARCA3/Neurensin-2 pathway in the development of more specific and efficient therapeutic strategies for neuropsychiatric disorders.Since the initial reports of a cluster of pneumonia cases of unidentified origin in Wuhan, China, in December 2019, the novel coronavirus that causes this disease - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - has spread throughout the world, igniting the twenty-first century's deadliest pandemic. Over the past 12 months, a dizzying array of information has emerged from numerous laboratories, covering everything from the putative origin of SARS-CoV-2 to the development of numerous candidate vaccines. Many immunologists quickly pivoted from their existing research to focus on coronavirus disease 2019 (COVID-19) and, owing to this unprecedented convergence of efforts on one viral infection, a remarkable body of work has been produced and disseminated, through both preprint servers and peer-reviewed journals. Here, we take readers through the timeline of key discoveries during the first year of the pandemic, which showcases the extraordinary leaps in our understanding of the immune response to SARS-CoV-2 and highlights gaps in our knowledge as well as areas for future investigations.Changes in cerebral blood flow are associated with stroke, aneurysms, vascular cognitive impairment, neurodegenerative diseases and other pathologies. Brain angiograms, typically performed via computed tomography or magnetic resonance imaging, are limited to millimetre-scale resolution and are insensitive to blood-flow dynamics. Here we show that ultrafast ultrasound localization microscopy of intravenously injected microbubbles enables transcranial imaging of deep vasculature in the adult human brain at microscopic resolution and the quantification of haemodynamic parameters. learn more Adaptive speckle tracking to correct for micrometric brain-motion artefacts and ultrasonic-wave aberrations induced during transcranial propagation allowed us to map the vascular network of tangled arteries to functionally characterize blood-flow dynamics at a resolution of up to 25 μm and to detect blood vortices in a small deep-seated aneurysm in a patient. Ultrafast ultrasound localization microscopy may facilitate the understanding of brain haemodynamics and of how vascular abnormalities in the brain are related to neurological pathologies.SARS-CoV-2 lineage B.1.1.7, a variant that was first detected in the UK in September 20201, has spread to multiple countries worldwide. Several studies have established that B.1.1.7 is more transmissible than pre-existing variants, but have not identified whether it leads to any change in disease severity2. Here we analyse a dataset that links 2,245,263 positive SARS-CoV-2 community tests and 17,452 deaths associated with COVID-19 in England from 1 November 2020 to 14 February 2021. For 1,146,534 (51%) of these tests, the presence or absence of B.1.1.7 can be identified because mutations in this lineage prevent PCR amplification of the spike (S) gene target (known as S gene target failure (SGTF)1). On the basis of 4,945 deaths with known SGTF status, we estimate that the hazard of death associated with SGTF is 55% (95% confidence interval, 39-72%) higher than in cases without SGTF after adjustment for age, sex, ethnicity, deprivation, residence in a care home, the local authority of residence and test date. This corresponds to the absolute risk of death for a 55-69-year-old man increasing from 0.6% to 0.9% (95% confidence interval, 0.8-1.0%) within 28 days of a positive test in the community. Correcting for misclassification of SGTF and missingness in SGTF status, we estimate that the hazard of death associated with B.1.1.7 is 61% (42-82%) higher than with pre-existing variants. link2 Our analysis suggests that B.1.1.7 is not only more transmissible than pre-existing SARS-CoV-2 variants, but may also cause more severe illness.Triple-negative breast cancer (TNBCs) display lung metastasis tropism. However, the mechanisms underlying this organ-specific pattern remains to be elucidated. We sought to evaluate the utility of blocking extravasation to prevent lung metastasis. To identify potential geminin overexpression-controlled genetic drivers that promote TNBC tumor homing to lungs, we used the differential/suppression subtractive chain (D/SSC) technique. A geminin overexpression-induced lung metastasis gene signature consists of 24 genes was discovered. We validated overexpression of five of these genes (LGR5, HAS2, CDH11, NCAM2, and DSC2) in worsening lung metastasis-free survival in TNBC patients. Our data demonstrate that LGR5-induced β-catenin signaling and stemness in TNBC cells are geminin-overexpression dependent. They also demonstrate for the first-time expression of RSPO2 in mouse lung tissue only and exacerbation of its secretion in the circulation of mice that develop geminin overexpressing/LGR5+-TNBC lung metastasis. link3 We identified a novel extravasation receptor complex, consists of CDH11, CD44v6, c-Met, and AXL on geminin overexpressing/LGR5+-TNBC lung metastatic precursors, inhibition of any of its receptors prevented geminin overexpressing/LGR5+-TNBC lung metastasis. Overall, we propose that geminin overexpression in normal mammary epithelial (HME) cells promotes the generation of TNBC metastatic precursors that home specifically to lungs by upregulating LGR5 expression and promoting stemness, intravasation, and extravasation in these precursors. Circulating levels of RSPO2 and OPN can be diagnostic biomarkers to improve risk stratification of metastatic TNBC to lungs, as well as identifying patients who may benefit from therapy targeting geminin alone or in combination with any member of the newly discovered extravasation receptor complex to minimize TNBC lung metastasis.Left-right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain's left-right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left-right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.
My Website: https://www.selleckchem.com/products/sant-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team