NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Could Electrophysiological Guidelines Alternative to Growth, and Photosynthetic Guidelines for you to Define your Result regarding Mulberry and also Paper Mulberry for you to Famine?
Turbulent fluid flows exhibit a complex small-scale structure with frequently occurring extreme velocity gradients. Particles probing such swirling and straining regions respond with an intricate shape-dependent orientational dynamics, which sensitively depends on the particle history. Here, we systematically develop a reduced-order model for the small-scale dynamics of turbulence, which captures the velocity gradient statistics along particle paths. An analysis of the resulting stochastic dynamical system allows pinpointing the emergence of non-Gaussian statistics and nontrivial temporal correlations of vorticity and strain, as previously reported from experiments and simulations. Based on these insights, we use our model to predict the orientational statistics of anisotropic particles in turbulence, enabling a host of modeling applications for complex particulate flows.We introduce a model of trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. We find the exact ground-state energy and many-body wave function. The density profile and the pair-correlation function are sampled using Monte Carlo method and show a rich variety of regimes with crossovers between them. Strong attraction leads to a trapped McGuire quantum soliton. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Stronger repulsion induces Friedel oscillations and the eventual formation of a Wigner crystal.Precise predictions are provided for the production of a Z boson and a b-jet in hadron-hadron collisions within the framework of perturbative QCD, at O(α_s^3). To obtain these predictions, we perform the first calculation of a hadronic scattering process involving the direct production of a flavored jet at next-to-next-to-leading-order accuracy in massless QCD and extend techniques to also account for the impact of finite heavy-quark mass effects. The predictions are compared to CMS data obtained in pp collisions at a center-of-mass energy of 8 TeV, which are the most precise data from run I of the LHC for this process, where a good description of the data is achieved. To allow this comparison, we have performed an unfolding of the data, which overcomes the long-standing issue that the experimental and theoretical definitions of jet flavor are incompatible.We use our lattice QCD computation of the B_c→J/ψ form factors to determine the differential decay rate for the semitauonic decay channel and construct the ratio of branching fractions R(J/ψ)=B(B_c^-→J/ψτ^-ν[over ¯]_τ)/B(B_c^-→J/ψμ^-ν[over ¯]_μ). We find R(J/ψ)=0.2582(38) and give an error budget. We also extend the relevant angular observables, which were recently suggested for the study of lepton flavor universality violating effects in B→D^*ℓν, to B_c→J/ψℓν and make predictions for their values under different new physics scenarios.Chiral spin textures stabilized by the interfacial Dzyaloshinkii-Moriya interaction, such as skyrmions and homochiral domain walls, have been shown to exhibit qualities that make them attractive for their incorporation in a variety of spintronic devices. However, for thicker multilayer films, mixed textures occur in which an achiral Bloch component coexists with a chiral Néel component of the domain wall to reduce the demagnetization field at the film surface. We show that an interlayer Dzyaloshinkii-Moriya interaction can break the degeneracy between Bloch chiralities. We further find large population asymmetries and chiral branching in the Bloch component of the domain walls in well-ordered Co/Pd multilayers. This asymmetry is a result of the combined effect of the demagnetization field and an interlayer Dzyaloshinkii-Moriya interaction, and is strongly related to film thickness and structural ordering. This work paves the way toward the utilization of this effect toward controlling Bloch chirality in magnetic multilayers.We compute the gravitational multipole moments and ratios of moments of nonextremal and of supersymmetric black holes in four dimensions, as well as of horizonless microstate geometries of the latter. For supersymmetric and for Kerr black holes many of these multipole moments vanish, and their dimensionless ratios are ill defined. We present two methods to compute these dimensionless ratios, which for certain supersymmetric black holes agree surprisingly well. We also compute these dimensionless ratios for the Kerr solution. Our methods allow us to calculate an infinite number of hitherto unknown parameters of Kerr black holes, giving us a new window into their physics.We suggest searching for the charged Higgs boson at the Large Hadron Collider (LHC) via cg→bH^+→btb[over ¯]. In the general two Higgs doublet model, extra top Yukawa couplings ρ_tc and ρ_tt can drive the disappearance of antimatter from the Universe, while c[over ¯]bH^+ and t[over ¯]bH^+ couple with strength ρ_tcV_tb and ρ_ttV_tb, respectively. For ρ_tc,ρ_tt∼0.5, and m_H^+∼300-500  GeV, evidence could emerge from LHC run 2 data at hand and discovery by adding run 3 data in the near future.Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.The early detection of tipping points, which describe a rapid departure from a stable state, is an important theoretical and practical challenge. Tipping points are most commonly associated with the disappearance of steady-state or periodic solutions at fold bifurcations. We discuss here multifrequency tipping (M tipping), which is tipping due to the disappearance of an attracting torus. M tipping is a generic phenomenon in systems with at least two intrinsic or external frequencies that can interact and, hence, is relevant to a wide variety of systems of interest. We show that the more complicated sequence of bifurcations involved in M tipping provides a possible consistent explanation for as yet unexplained behavior observed near tipping in climate models for the Atlantic meridional overturning circulation. More generally, this Letter provides a path toward identifying possible early warning signs of tipping in multiple-frequency systems.For semiconductors and insulators, it is commonly believed that in-gap transitions into nonlocalized states are smoothly suppressed in the clean limit; i.e., at zero temperature, their contribution vanishes due to the unavailability of states. We present a novel type of subgap response which shows that this intuition does not generalize beyond linear response. Namely, we find that the dc current due to the bulk photovoltaic effect can be finite and mostly temperature independent in an allowed window of subgap transitions. We expect that a moderate range of excitation energies lies between the bulk energy gap and the mobility edge where this effect is observable. Using a simplified relaxation time model for the band broadening, we find the subgap dc current to be temperature independent for noninteracting systems but temperature dependent for strongly interacting systems. Thus, the subgap response may be used to distinguish whether a state is single-particle localized or many-body localized.A photonic cluster state with a tree-type entanglement structure constitutes an efficient resource for quantum error correction of photon loss. But the generation of a tree cluster state with an arbitrary size is notoriously difficult. Here, we propose a protocol to deterministically generate photonic tree states of arbitrary size by using only a single quantum emitter. Photonic entanglement is established through both emission and rescattering from the same emitter, enabling fast and resource-efficient entanglement generation. The same protocol can also be extended to generate more general tree-type entangled states.A Thouless pump can be regarded as a dynamical version of the integer quantum Hall effect. In a finite-size configuration, such a topological pump displays edge modes that emerge dynamically from one bulk band and dive into the opposite bulk band, an effect that can be reproduced with both quantum and classical systems. Here, we report the first unassisted dynamic energy transfer across a metamaterial, via pumping of such topological edge modes. The system is a topological aperiodic acoustic crystal, with a phason that can be fast and periodically driven in adiabatic cycles. When one edge of the metamaterial is excited in a topological forbidden range of frequencies, a microphone placed at the other edge starts to pick up a signal as soon as the pumping process is set in motion. In contrast, the microphone picks no signal when the forbidden range of frequencies is nontopological.The physical mechanism of the plasmonic skyrmion lattice formation in a magnetic layer deposited on a metallic substrate is studied theoretically. The optical lattice is the essence of the standing interference pattern of the surface plasmon polaritons created through coherent or incoherent laser sources. The nodal points of the interference pattern play the role of lattice sites where skyrmions are confined. The confinement appears as a result of the magnetoelectric effect and the electric field associated with the plasmon waves. The proposed model is applicable to yttrium iron garnet and single-phase multiferroics and combines plasmonics and skyrmionics.Motivated by the recent theoretical studies on a two-dimensional (2D) chiral Hamiltonian based on the Su-Schrieffer-Heeger chains [L. Zhu, E. Prodan, and K. H. Ahn, Phys. Rev. B 99, 041117(R) (2019)PRBMDO2469-995010.1103/PhysRevB.99.041117], we experimentally and computationally demonstrate that topological flat frequency bands can occur at open edges of 2D planar metamaterials and at antiphase boundary seams of ring-shaped or tubular metamaterials. Specifically, using mechanical systems made of magnetically coupled spinners, we reveal that the presence of the edge or seam bands that are flat in the entire projected reciprocal space follows the predictions based on topological winding numbers. The edge-to-edge distance sensitively controls the flatness of the edge bands and the localization of excitations, consistent with the theoretical analysis. The analog of the fractional charge state is observed. Possible realizations of flat bands in a large class of metamaterials, including photonic crystals and electronic metamaterials, are discussed.We provide a systematic and self-consistent method to calculate the generalized Brillouin zone (GBZ) analytically in one-dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-band non-Hermitian Hamiltonian is constituted by n distinct sub-GBZs, each of which is a piecewise analytic closed loop. Based on the concept of resultant, we can show that all the analytic properties of the GBZ can be characterized by an algebraic equation, the solution of which in the complex plane is dubbed as auxiliary GBZ (aGBZ). We also provide a systematic method to obtain the GBZ from aGBZ. Two physical applications are also discussed. DNA Damage inhibitor Our method provides an analytic approach to the spectral problem of open boundary non-Hermitian systems in the thermodynamic limit.
Website: https://www.selleckchem.com/products/santacruzamate-a-cay10683.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.