Notes
![]() ![]() Notes - notes.io |
Lymphatic filariasis is a parasitic disease caused by nematodes affecting millions of individuals in the tropical region. The complex life cycle of the filarial parasite eludes protective measures such as chemotherapy and vector control. Vaccination through recombinant proteins stands as one of the safe and most effective methods. The filarial antigens Brugia malayi Thioredoxin (TRX) and abundant larval transcript-2 (ALT-2) can induce recognizable levels of protection in murine animal models. Chitosan is a safe, non-toxic material ubiquitously served as an efficient carrier and an adjuvant. The present study was attempted to enhance the immune efficacy of filarial antigens using chitosan nanoparticles (CN) through mucosal routes of immunization. Our study showed that oral immunization was able to produce enhanced humoral response and balanced Th1/Th2 antibody isotype response for the recombinant antigens compared to intranasal routes. A high level of splenocyte T cell proliferation (P less then 0.01) was obtained for both routes. The cytokine analysis showed a high level of IFN-γ followed by IL-5 for the oral route, whereas a high level of IL-4 was observed for intranasal route. These results confirm the ability of chitosan nanoparticles to elevate the immune efficacy of the antigens through the oral route in mice.An increasing number of non-coding RNAs (ncRNAs) have been discovered recently with the advance of RNA-seq. Nevertheless, the function of ncRNAs in leaf senescence was not fully elucidated. In this study, the whole transcriptome sequencing was employed to characterize the expression profiles of mRNA, lncRNA and miRNA during leaf senescence. A total of 2774 mRNAs, 160 lncRNAs and 117 miRNAs were identified to be significantly differentially expressed between the senescent and the young leaves. Co-expression analysis showed that 160 differential expressing (DE) lncRNAs potentially regulated 946 protein-coding genes in trans, but only 32 targeted protein-coding genes were predicated to be regulated by 30 lncRNAs in cis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these trans- and cis-target genes revealed that the DE lncRNAs participated in pathways, such as photosynthesis, transporters and circadian rhythm. Furthermore, virus-induced gene silencing (VIGS) was employed to illuminate the role of lncRNAs. The silence of MSTRG.16920 and MSTRG.7613, two intergenic lncRNAs, significantly inhibited leaf senescence induced by darkness, presumably attributed to the downregulated expression of their corresponding target genes Solyc02g069960 and Solyc06g050440, respectively. Notably, Solyc02g069960 and Solyc06g050440 encoding senescence-related NAC transcription factor and reactive oxygen species (ROS)-related peroxidase, respectively, served as positive regulators of leaf senescence. Collectively, our study provides a comprehensive expression profile of lncRNAs in senescent leaf with the concurrent integrated expression of mRNAs and miRNAs.The composite film of amphiphilic chitosan/iodine, poly(aminoethyl) chitosan citronellal Schiff base iodine (PACSC-I), was prepared, and characterized by SEM, AFM, FTIR, 1H NMR and XRD. The physicochemical properties of the film including hydrophilicity, water absorption, mechanical, thermal degradation, iodine release and antibacterial properties were tested, and the cytocompatibility evaluation of the composite film was also performed. The results showed that PACSC-I was successfully prepared with good hydrophilicity (water contact angle 47.34°), water absorption capacity (water absorption ratio 229.55 %), elasticity (elongation at break 6.72 %) and thermal stability. The composite film had a controlled release effect on iodine, reaching a maximum released concentration of 8.84 × 10-4 mol/L. PACSC-I exerted a synergistic antibacterial effect with strong antibacterial activities. Cell viability and apoptosis assays showed that PACSC-I had good biocompatibility towards HaCaT cells. Therefore, the PACSC-I film had promising applications in the medical field as antibacterial material.SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.Frequent use of insecticide causes an environmental hazard, and also leads pest to develop insecticide resistance. Enhancement of metabolic detoxification and reduction of target sensitivity are the primary mechanism of insecticide resistance. Clarifying the regulatory pathway of resistance mechanism states a pivotal theoretical foundation of delaying insecticide resistance development. Here, we show that three endogenous microRNAs, PC-3p-2522_840, PC-3p-446_6601 and PC-5p-3096_674, are required for the small brown planthopper (SBPH) to modulate triflumezopyrim tolerance via activating pathways of three metabolic detoxification phases. Twenty-one down-regulated miRNAs were acquired, and PC-5p-3096_674, PC-3p-446_6601 and PC-3p-2522_840 were the three most significantly down-regulated miRNAs during triflumezopyrim exposure. The mortality of SBPH was significantly increased after over-supplementation of PC-5p-3096_674, PC-3p-446_6601 and PC-3p-2522_840, with triflumezopyrim exposure. Moreover, the interactions between PC-3p-2522_840 and cytochrome P450 CYP6FL1, PC-3p-446_6601 and glutathione S-transferase GSTD2, UDP-Glycosyltransferase UGT386F1, PC-5p-3096_674 and ATP-binding cassette transporters ABCA3 were systematically demonstrated through the dual luciferase reporter assay. Besides, the mortality of SBPH was significantly increased after knockdown of CYP6FL1, GSTD2, UGT386F1 and ABCA3 with triflumezopyrim exposure. These findings uncover a strategy whereby the SBPH weakens three endogenous microRNAs to activate pathways of three metabolic detoxification phases via targeting CYP6FL1, GSTD2, UGT386F1 and ABCA3 and promotes its tolerance to triflumezopyrim.In the present study, the effects of a purified fraction of polysaccharides from the fruits of Lycium barbarum L. (LBPs), named LBPs-4, on the dextran sodium sulfate (DSS)-induced colitis in mice were evaluated. The results showed that LBPs-4 decreased disease activity index score, prevented colon shortening and reduced plasma levels of pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1) and prostaglandin E2) in mice with colitis. LBPs-4 could increase the relative abundances of Akkermansia and Bifidobacterium in gut microbiota, and it also mitigated the intestinal barrier damage by upregulating the level of tight junction protein ZO-1 and the number of goblet cells in colon. Moreover, the results of in vitro culture indicated that the growth of Bifidobacterium longum subsp. infantis CCX 19042 was promoted by LBPs-4, whereas the culture media of LBPs-4 by Bacteroides ovatus with or without addition of mucin could enhance the growth of Akkermansia muciniphila. Luzindole in vivo Collectively, these results suggested that LBPs-4 should be potential prebiotics for the treatment of colitis.Herein, we report a multifunctional hydrogel membrane with good mechanical properties, excellent antioxidant efficiency, and broad-spectrum antimicrobial activity. For this purpose, a series of chitosan-carboxymethyl cellulose-Pluronic P123 (CHT-CMC-P123) hydrogel membranes were prepared by blending various tetracycline hydrochloride (TCH) contents. The physicochemical and biological properties of CHT-CMC-P123 membranes were comprehensively investigated. With the increase of TCH content from 5 % to 20 %, hydrogel membranes presented a decreased water contact angle from 18.96° to 11.24°, and a decreased water vapor transmission rate from 171.8 to 156.1 g/m2 h. Besides, with the increase of TCH content (5-20 %), the tensile strength (0.31-0.11 MPa) and elongation at break (10.57-4.82 %) of hydrogel membranes decreased while their thickness increased (113.5-324.3 μm). The data show that the release of TCH reached equilibrium after 26 days, with a cumulative percentage of approximately 28 %-87 %. Moreover, the hydrogel membranes exhibited a high antioxidant capacity of ~92 % for DPPH radical. Importantly, the incorporation of TCH significantly (~2.3 fold) enhanced the antimicrobial activity of the hydrogel membranes against Gram-positive, and Gram-negative bacteria and yeast. Based on our findings, these hydrogel membranes with superior properties may serve as effective food packaging and wound healing materials.The study aims to analyze inequalities in Covid-19 outcomes in Brazil in 2020/2021 according to the per capita Gross Domestic Product (pcGDP) of municipalities. All cases of Severe Acute Respiratory Syndrome (SARS) who were hospitalized or died, regardless of hospitalization, registered in Brazil in 2020 and 2021 were analyzed (n = 2,902,742), including those with a confirmed diagnosis of Covid-19 (n = 1,894,165). We calculated lethality due to Covid-19, the performance of diagnostic tests among patients with SARS, and the hospital care received by those with Covid-19 according to the pcGDP of the patients' municipalities of residence. Data were analyzed for each epidemiological week and the risk of each outcome was estimated using Poisson regression. Municipalities in the lowest pcGDP decile had (i) 30% (95%CI 28%-32%) higher lethality from Covid-19, (ii) three times higher proportion of patients with SARS without the collection of biological material for the diagnosis of Covid-19, (iii) 16% (95%CI 15%-16%) higher proportion of SARS patients testing in a period longer than two days from the onset of symptoms, (iv) 140% (95%CI 134%-145%) higher absence of CT scan use. There is deep socioeconomic inequality among Brazilian municipalities regarding the occurrence of Covid-19 negative outcomes.
A substantial proportion of common variable immunodeficiency (CVID) patients has duodenal inflammation of largely unknown etiology. However, because of its histologic similarities with celiac disease, gluten sensitivity has been proposed as a potential mechanism.
We aimed to elucidate the role of the duodenal microenvironment in the pathogenesis of duodenal inflammation in CVID by investigating the transcriptional, proteomic, and microbial signatures of duodenal biopsy samples in CVID.
DNA, total RNA, and protein were isolated from snap-frozen pieces of duodenal biopsy samples from CVID (with and without duodenal inflammation), healthy controls, and patients with celiac disease (untreated). RNA sequencing, mass spectrometry-based proteomics, and 16S ribosomal DNA sequencing (bacteria) were then performed.
CVID separated from controls in regulation of transcriptional response to lipopolysaccharide and cellular immune responses. These differences were independent of mucosal inflammation. Instead, CVID patients with duodenal inflammation displayed alterations in transcription of genes involved in response to viral infections.
Homepage: https://www.selleckchem.com/products/luzindole.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team