NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Increased portrayal involving focal respiratory tract lesions making use of spectral indicator dual vitality CT.
Compared with the pure dielectric plate, the reflection coefficients are on average reduced by 40% at 13.5 GHz for TE-polarized waves from 0° to 80°. Therefore, we think, anisotropic cascaded electromagnetic transparent windows are capable of tailoring the electromagnetic parameter tensors as desired, and provide more adjustable degrees of freedom for manipulating electromagnetic wavefronts, which might open up a promising way for electromagnetic antireflection and find applications in radomes, IR windows and others.Fully distributed fiber sensors, such as phase sensitive optical time domain reflectometry (Φ-OTDR) systems, have drawn significant attention from researchers, especially for use in geophysical applications. Distributed sensing, cost efficiency, wide dynamic range, good spatial resolution, and high accuracy make these sensors ideal for industrial use and for replacing traditional geophones. However, inevitable drifts in the central frequency of laser sources always cause low frequency noise in the output, which could easily be mistaken with real sub-Hertz environmental vibrations. This deteriorates the data accuracy, especially when dealing with low frequency seismic waves. In this study, we propose a method in which adding an extra probe frequency to a Φ-OTDR setup provides a reference frequency. This reference frequency provides information regarding changes in the laser source and other environmental noises, such as humidity and temperature, helping to refine extracted results from low frequency noise. This feature is also very useful for frequency domain analysis, where we may lose the near DC band information during mathematical measurements. Regarding the adjustable properties of this reference frequency, it can be implemented in various Φ-OTDR applications and commercial devices.We propose and demonstrate a general design method for refractive two-element systems enabling variable optical performance between two specified boundary conditions. Similar to the Alvarez lens, small, relative lateral shifts in opposite directions are applied to a pair of plano-freeform elements. The surface prescriptions of the boundary lenses and a maximum desired shift between freeform plates are the main design inputs. In contrast to previous approaches, this method is not limited to boundaries with similar optical functions and can enable a wide range of challenging, dynamic functions for both imaging and non-imaging applications. Background theory and design processes are presented both for cases that are conducive to analytical surface descriptions, as well as for non-analytic surfaces that must be described numerically. Multiple examples are presented to demonstrate the flexibility of the proposed method.We demonstrate distributed optical fiber-based pressure measurements with sub-bar pressure resolution and 1 m spatial resolution over a ∼100 m distance using a phase-sensitive optical time-domain reflectometry technique. To do so, we have designed a novel highly birefringent microstructured optical fiber that features a high pressure to temperature sensitivity ratio, a high birefringence and a mode field diameter that is comparable to that of conventional step-index single mode fibers. Our experiments with two fibers fabricated according to the design confirm the high polarimetric pressure sensitivities (-62.4 rad×MPa-1×m-1 and -40.1 rad×MPa-1×m-1) and simultaneously low polarimetric temperature sensitivities (0.09 rad×K-1×m-1 and 0.2 rad×K-1×m-1), at a wavelength of 1550 nm. The fiber features a sufficiently uniform birefringence over its entire length (2.17×10-4 ± 7.65×10-6) and low propagation loss (∼3 dB/km), which allows envisaging pressure measurements along distances up to several kilometers.Quantum memories, for storing then retrieving photonic quantum states on demand, are crucial components for scalable quantum technologies. Spontaneous parametric downconversion (SPDC) with a nonlinear crystal is the most widely used process for generating entangled photon pairs or heralded single photons. Despite the desirability of efficient quantum memories for SPDC-generated single photons, the storage and retrieval efficiencies achieved with this approach still fall below 50%, a threshold value for practical applications. Here, we report an efficiency of > 70% for the storage of heralded single photons generated by cavity-enhanced SPDC using atomic quantum memories based on electromagnetically induced transparency (EIT). In addition, we demonstrate the quantum memory for single-photon polarization qubits with a fidelity of ∼96%. This result paves the way towards the development of large-scale quantum networks.We develop a novel hyperspectral imaging system using structured illumination in an SLM-based Michelson interferometer. In our design, we use a reflective SLM as a mirror in one of the arms of a Michelson interferometer and scan the interferometer by varying the phase across the SLM display. For achieving the latter, we apply a checkerboard phase mask on the SLM display where the gray value varies between 0-255, thereby imparting a dynamic phase of up to 262° to the incident light beam. We couple a supercontinuum source into the interferometer in order to mimic an astronomical object such as the Sun and choose a central wavelength of 637.4 nm akin to the strong emission line of Fe X present in the solar spectrum. We use a bandwidth of 30 nm and extract fringes corresponding to a spectral resolution of 3.8 nm which is limited by the reflectivity of the SLM. We also demonstrate a maximum wavelength tunability of ∼8 nm by varying the phase over the phase mask with a spectral sampling of around 0.03 nm between intermediate fringes. The checkerboard phase mask can be adapted close to real time on time-scales of a few tens of milliseconds to obtain spectral information for other near-contiguous wavelengths. The compactness, potential low cost, low power requirements, real-time tunability and lack of moving mechanical parts in the setup implies that it can have very useful applications in settings that require near real-time, multi-wavelength spectroscopic applications and is especially relevant in space astronomy.Fluorescence has the potential to identify the types of substances associated with aerosols. To demonstrate its usefulness in environmental studies, we investigated the use of Excitation-Emission-Matrix (EEM) fluorescence in lidar bioaerosol monitoring. First, the EEM fluorescence of cedar, ragweed, and apple pollens as typical bioaerosols found around our surroundings were measured using a commercial fluorescence spectrometer. We found that the patterns of fluorescence changed depending on the pollen type and excitation wavelength and it meant that studying these EEM fluorescence patterns was a good parameter for identifying pollen types. Then, we setup a simple EEM fluorescence lidar to confirm the usefulness in lidar bioaerosol monitoring. The lidar consisted of three laser diodes and one light emitting diode with output at 520 nm, 445 nm, 405 nm and 325 nm, respectively, an ultra violet camera lens as a receiver, and a fluorescence spectrum detection unit. Comparing the lidar simulation results with the EEM fluorescence dataset supported the possibility of performing bioaerosol monitoring using the EEM fluorescence lidar. Based on the results and the current technology, a feasible design of a bioaerosol detection EEM fluorescence lidar is proposed for future rel-time remote sensing and mapping of atmospheric bioaerosols.We demonstrate a free-running single-cavity dual-comb optical parametric oscillator (OPO) pumped by a single-cavity dual-comb solid-state laser. The OPO ring cavity contains a single periodically-poled MgO-doped LiNbO3 (PPLN) crystal. Each idler beam has more than 245-mW average power at 3550 nm and 3579 nm center wavelengths (bandwidth 130 nm). The signal beams are simultaneously outcoupled with more than 220 mW per beam at 1499 nm and 1496 nm center wavelength. The nominal repetition rate is 80 MHz, while the repetition rate difference is tunable and set to 34 Hz. To evaluate the feasibility of using this type of source for dual-comb applications, we characterize the noise and coherence properties of the OPO signal beams. We find ultra-low relative intensity noise (RIN) below -158 dBc/Hz at offset frequencies above 1 MHz. A heterodyne beat note measurement with a continuous wave (cw) laser is performed to determine the linewidth of a radio-frequency (RF) comb line. We find a full-width half-maximum (FWHM) linewidth of around 400 Hz. Moreover, the interferometric measurement between the two signal beams reveals a surprising property the center of the corresponding RF spectrum is always near zero frequency, even when tuning the pump repetition rate difference or the OPO cavity length. We explain this effect theoretically and discuss its implications for generating stable low-noise idler combs suitable for high-sensitivity mid-infrared dual-comb spectroscopy (DCS).Hybrid optical-plasmonic modes have the characteristics of low loss and small mode volume, which will result in the strong localization and enhancement of electromagnetic field. Such advantages of hybrid optical-plasmonic mode are important for the enhancement of light-matter interactions. Here, terahertz (THz) hybrid modes of Fabry-Perot resonances (FPRs) and spoof surface plasmon polaritons (SSPPs) in the modified Otto scheme are investigated both in theoretical and experimental aspects. The device structure is composed of a metal grating silicon waveguide (MGSW) and a metal slit grating (MSG). The two components are vertically stacked with a variable air gap between them. The THz hybrid modes are originated from the far-field coupling of the FPRs and the SSPP supported by the air gap and the MSG, respectively. selleck chemicals llc By changing the thickness of the air gap, the resonant frequency of the FPR-SSPP modes can be tuned in a frequency range of about 0.1 THz. An anti-crossing behavior between two reflection dips corresponding to the guided-mode resonance in the MGSW and the FPR-SSPP mode is observed, which leads to the narrowing of the reflection dips in the anti-crossing region. Numerical simulations show that at the resonant frequencies of FPR-SSPP mode, there is a huge volume-averaged electromagnetic energy enhancement of about 1600 times in the grooves of the MSG, which is around 8.7 times larger than that induced by the SSPP directly launched by free-space electromagnetic field. The hybrid FPR-SSPP modes can be used to construct THz sensors and detectors with high sensitivity.A novel method to achieve the coherence control of spatiotemporal coherency vortices of spatially and temporally partially coherent pulsed vortex (STPCPV) beams is proposed. The influence of spatial and temporal coherence of the source on the phase distributions and the positions of spatiotemporal coherency vortices of the STPCPV beams propagating through fused silica is investigated in detail, for the first time to our knowledge. It is found that the coherence width and the coherence time of the incident beam can be regarded as a perfect tool for controlling the phase distribution and position of a spatiotemporal coherency vortex. The results obtained in this paper will benefit a number of applications relating to light-matter interaction, quantum entanglement, quantum imaging, optical trapping and spatiotemporal spin-orbit angular momentum coupling.
Homepage: https://www.selleckchem.com/products/kn-62.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.