Notes
![]() ![]() Notes - notes.io |
Our model shows quantitative agreement with experimental observations of the maximum phase-pure stoichiometric index (Ncrit) and explains the nonmonotonic evolution of the lattice parameters with increasing stoichiometric index (N). This model is generalizable to the entire family of q-2DPKs and can guide the design of photovoltaic and optical materials that combine the structural stability of the q-2DPKs while retaining the charge carrier properties of their 3D counterparts.Molecular rotors have attracted considerable interest for their prospects in nanotechnology. However, their adsorption on supporting substrates, where they may be addressed individually, usually modifies their properties. Here, we investigate the switching of two closely related three-state rotors mounted on platforms on Au(111) using low-temperature scanning tunneling microscopy and density functional theory calculations. Being physisorbed, the platforms retain important gas-phase properties of the rotor. This simplifies a detailed analysis and permits, for instance, the identification of the vibrational modes involved in the rotation process. The symmetry provided by the platform enables active control of the rotation direction through electrostatic interactions with the tip and charged neighboring adsorbates. The present investigation of two model systems may turn out useful for designing platforms that provide directional rotation and for transferring more sophisticated molecular machines from the gas phase to surfaces.Self-standing and cost-effective electrodes for high-performance oxygen evolution reaction (OER) are vital for emerging energy storage and conversion technologies. We report a scalable binder-free OER electrode with open hollow nanocubes of Ni-doped CuOx on Ni foam (hNC/NF) through spontaneous galvanic displacement followed by simple electrochemical oxidation. Face-selective etching for the unique structure of hollow nanocubes with large open ends is achieved by utilizing the different accessibility of the top and side faces of cubes to solution species, more specifically the depletion of reactants between the densely supported nanocubes. Besides, the in situ deposition on Ni foam allows spontaneous Ni doping, which, as revealed by DFT calculations, fortunately strengthens the adsorption of oxygenated intermediates and therefore could optimize the free energy path of OER on Cu oxides. Benefiting further from the high accessible surface area of the unique open hollow architecture, the hNC/NF exhibits an outstanding OER activity with a small overpotential (η = 305 mV at 10 mA cm-2) as well as excellent stability without significant decay after 120 h operation. To our knowledge, this should represent the best OER performance of Cu-based electrocatalysts and is competitive with those based on Fe-group metals. Besides, the hNC/NF-based water electrolyzer delivers a performance of 1.50 V cell voltage at 10 mA cm-2, offering great promise for practical application.Ni-rich layered electrode materials have attracted great attention as a promising cathode candidate for high-energy-density lithium-ion batteries because of their high capacity and relatively low cost. However, they have been suffering from severe capacity fading for cycles, which can originate from several factors such as the phase transition at the end of charge and disintegration of the particles. Herein, a simple and novel sublimation-induced gas-reacting (SIGR) process has been developed by using elemental sulfur to conformally coat Ni-rich layered materials. Phenylbutyrate The sublimated gas-phase S can react with detrimental residual Li compounds on the surface of the particles. As a result, the reacted layer of LixSyOz phases forms on the outside of the secondary particles and simultaneously in the boundaries between primary particles inside the secondary particles. Compared to other reported surface modification processes, the SIGR-treated Ni-rich materials show substantially increased capacity retention and superior voltage retention by protecting the surface from the electrolyte and mitigating disintegration of the secondary particles. The SIGR process is a simple and scalable solid-state reaction at low temperature to improve the cycling stability of high-capacity Ni-rich electrode materials.Assemblies of colloidal semiconductor nanocrystals (NCs) in the form of thin solid films leverage the size-dependent quantum confinement properties and the wet chemical methods vital for the development of the emerging solution-processable electronics, photonics, and optoelectronics technologies. The ability to control the charge carrier transport in the colloidal NC assemblies is fundamental for altering their electronic and optical properties for the desired applications. Here we demonstrate a strategy to render the solids of narrow-bandgap NC assemblies exclusively electron-transporting by creating a type-II heterojunction via shelling. Electronic transport of molecularly cross-linked PbTe@PbS core@shell NC assemblies is measured using both a conventional solid gate transistor and an electric-double-layer transistor, as well as compared with those of core-only PbTe NCs. In contrast to the ambipolar characteristics demonstrated by many narrow-bandgap NCs, the core@shell NCs exhibit exclusive n-type transport, i.e., drastically suppressed contribution of holes to the overall transport. The PbS shell that forms a type-II heterojunction assists the selective carrier transport by heavy doping of electrons into the PbTe-core conduction level and simultaneously strongly localizes the holes within the NC core valence level. This strongly enhanced n-type transport makes these core@shell NCs suitable for applications where ambipolar characteristics should be actively suppressed, in particular, for thermoelectric and electron-transporting layers in photovoltaic devices.ConspectusChirality is a fundamental property of a molecule, and the significant progress in chirality detection and quantification of a molecule has inspired major advances in various fields ranging from chemistry, biology, to biotechnology and pharmacology. Chiral molecules have identical molecular formulas, atom-to-atom linkages, and bonding distances, and as such they are difficult to distinguish both sensitively and selectively. Today, most new drugs and those under development are chiral, which requires technological developments in the separation and detection of chiral molecules. Therefore, rapid and facile methods to detect and discriminate chiral compounds are necessary to accelerate advances in many research fields. The challenges in analysis stem from the obvious fact that chiral molecules have the same physical properties. Although significant progress on the detection of enantiomeric composition has been achieved in the past decade, in order to fully realize the capacity of chiral molecular interrogation, highly sensitive and selective, portable, and easy-to-use detection remains challenging because of the limitation of conventional techniques.
Read More: https://www.selleckchem.com/products/sodium-phenylbutyrate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team