Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Since 2007, repeated outbreaks of Zika virus (ZIKV) have affected millions of people worldwide and created a global health concern with major complications like microcephaly and Guillain Barre's syndrome. To date, there is not a single Zika-specific licensed drug present in the market. However, in recent months, several antiviral molecules have been screened against ZIKV. Among those, (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has shown great virucidal potential against flaviviruses including ZIKV. The mechanistic understanding of EGCG-targeting viral proteins is not yet entirely deciphered except that little is known about its interaction with viral envelope protein and viral protease. We designed our current study to find inhibitory actions of EGCG against ZIKV NS3 helicase. NS3 helicase performs a significant role in viral replication by unwinding RNA after hydrolyzing NTP. We employed molecular docking and simulation approach and found significant interactions at the ATPase site and also at the RNA binding site. Further, the enzymatic assay has shown significant inhibition of NTPase activity with an IC50 value of 295.7 nM and Ki of 0.387 ± 0.034 μM. Our study suggests the possibility that EGCG could be considered as a prime backbone molecule for further broad-spectrum inhibitor development against ZIKV and other flaviviruses.Starch content is an important parameter indicating the state of harvest maturity of fresh cassava root. Nowadays, the methods used for estimating the starch content in the field are the measurement of root weight, size, or snapping force. These methods are simple but the results are rather incorrect. For this reason, a developed portable visible and near-infrared spectrometer(350-1050 nm) was used to estimate rapidly and nondestructively starch content in fresh cassava root. The best starch prediction model received from the full wavelength region was able to predict the starch content with a correlation coefficient of prediction (r p) of 0.825, standard errors of prediction of 2.502%, and bias of -0.115%. Moreover, the predicted values were not significantly different from the actual values obtained from the standard method at 95% confidence intervals. It was also noted that the top position of the root was a good representative for starch prediction. In addition, this position was easy to be measured in the field before harvesting.Type-I clathrate compounds Yb x Ba8-x Ga16Ge30 have been synthesized by the high-pressure and high-temperature (HPHT) method rapidly. The effects of the synergy of atom filling and pressure regulation on the microstructure and thermal and electrical properties have been investigated. With the content of Yb atom increasing, the carrier concentration is improved, the electrical resistivity and the absolute Seebeck coefficient are decreased, while the thermal conductivity is reduced significantly. A series of extremely low lattice thermal conductivities are achieved, attributed to the enhancement of multiscale phonon scattering for the "rattling" of the filled guest atoms, the heterogeneous distribution of nano- and microstructures, grain boundaries, abundant lattice distortions, lattice deformations, and dislocations. As a result, a maximum ZT of about 1.07 at 873 K has achieved for the Yb0.5Ba7.5Ga16Ge30 sample.In this paper, a palm-size digital microfluidic (DMF) platform integrated with colorimetric analysis was developed for quantifying the concentration of nitrite. To realize the on-chip repeatable colorimetric analysis, a novel printed circuit board (PCB)-based DMF chip was designed with an embedded aperture on the actuator electrode, forming a vertical light path for online measurement of the droplets. The capabilities of the DMF platform enable automatic manipulation of microliter-level droplets to implement Griess assay without the use of external systems such as syringe, pump, or valve, which provides the benefits including high flexibility, portability, miniature size, and low cost. Results indicated the characteristics of good linearity (R 2 = 0.9974), the ignorable crosstalk for reusability, and the limit of detection (LOD) of nitrite as low as 5 μg/L. Furthermore, the presented platform was successfully applied to determine nitrite levels in food products with reliable results and satisfactory recoveries. This integrated DMF platform can be a promising new tool for a wide range of applications involving step-by-step solution mixing and optical detection in environmental monitoring, food safety analysis, and point-of-care testing.Taking reducing the wear of the fixed cone liner of a cone crusher as the starting point, the movement and geometry parameters of the cone crusher are studied using the discrete element method. To improve the service life and working efficiency of the whole cone crusher. The UG model and discrete element Yade model of the cone crusher are established, and the different shapes of the tin ore are represented using Yade's preprocessor through eight different ways of particle combination and superposition. The static friction coefficient between the manganese ore and the cone crusher is studied and calibrated using the slope method. The relative error between the Yade and test results is 1.58%, and the calibration result is 0.44. The repose angle of the manganese ore is studied using the collapse method. The repose angle increases with the increase of the static friction coefficient and the dynamic friction coefficient, but the change trend is different. The effect of the dynamic friction coefficient on the reposm the test. The research results show the correctness of using the Yade method to study the wear of the fixed cone liner of a cone crusher, which provides a theoretical basis for reducing the wear of the fixed cone liner of a cone crusher, and puts forward a new method to study the wear of relevant parts of a fixed cone crusher. At the same time, the research results are of great significance for achieving energy-saving in mining enterprises.Graphene liquid cells provide the highest possible spatial resolution for liquid-phase transmission electron microscopy. Here, in graphene liquid cells (GLCs), we studied the nanoscale dynamics of bubbles induced by controllable damage in graphene. The extent of damage depended on the electron dose rate and the presence of bubbles in the cell. After graphene was damaged, air leaked from the bubbles into the water. We also observed the unexpected directional nucleation of new bubbles, which is beyond the explanation of conventional diffusion theory. We attributed this to the effect of nanoscale confinement. These findings provide new insights into complex fluid phenomena under nanoscale confinement.A series of novel mono- and binuclear arene-ruthenium(II) complexes [(p-cym)Ru(L)Cl] containing 11H-indeno[1,2-b]quinoxalin-11-one derivatives or tryptanthrin-6-oxime were synthesized and characterized by X-ray crystallography, IR, NMR spectroscopy, cyclic voltammetry, and elemental analysis. Theoretical calculations invoking singlet state geometry optimization, solvation effects, and noncovalent interactions were done using density functional theory (DFT). DFT calculations were also applied to evaluate the electronic properties, and time-dependent DFT was applied to clarify experimental UV-vis results. Cytotoxicity for cancerous and noncancerous human cell lines was evaluated with cell viability MTT assay. Complexes demonstrated a moderate cytotoxic effect toward cancerous human cell line PANC-1. The catalytic activity of the complexes was evaluated in transfer hydrogenation of aryl ketones. All complexes exhibited good catalytic activity and functional group tolerance.In this study, the effects of the combination of a mesoporous material and Zn-exchanged ZSM-5 on the activity and selectivity of aromatic compounds in dehydrocyclization of n-pentane were investigated. Selleckchem tetrathiomolybdate A total of 65-85 wt % of ZnZSM-5 was mixed with 0-20 wt % of Al2O3 and 15 wt % of the alumina-sol binder using a conventional kneading method. Dehydrocyclization of n-pentane was performed using a fixed-bed reactor under the conditions of a H2 atmosphere and the temperature range of 450-550 °C. Conversions of n-pentane tended to increase upon increasing the amounts of zeolite content and ZnZSM/0A (85 wt % ZnZSM-5, 0 wt % Al2O3, and 15 wt % binder) exhibited the highest value. The selectivity for toluene and benzene increased with increasing temperature, while it decreased in the order ZnZSM/10A > ZnZSM/0A > ZnZSM/20A in comparison at the same temperature. Upon changing the carrier gas, the conversion decreased in the order CH4 > H2 > H2 + N2 > N2. Although the selectivity for aromatics was higher under CH4 and N2 atmospheres, the conversions decreased at 550 °C with time, suggesting that the deactivation would proceed by coke formation. Furthermore, the selectivity for aromatics of ZnZSM/10A was higher than that of ZnZSM/0A, indicating that the use of mesoporous Al2O3 as a matrix would be very effective for this reaction and draw the maximum catalytic functions. When the reaction route was estimated from the amounts of methane and C2 and C3 fractions formed, it was proposed that active Zn species would catalyze the aromatization of olefins where benzene is formed from ethene and butene, toluene from propene and butene, and xylene from 2 molecules of butene.Ribonucleic acid (RNA) is particularly sensitive to enzymatic degradation by endonucleases prior to sample analysis. In-field preservation has been a challenge for RNA sample preparation. Very recently, hydrophobic magnetic ionic liquids (MIL) have shown significant promise in the area of RNA extraction. In this study, MILs were synthesized and employed as solvents for the extraction and preservation of RNA in aqueous solution. RNA samples obtained from yeast cells were extracted and preserved by the trihexyl(tetradecyl) phosphonium tris(hexafluoroacetylaceto)cobaltate(II) ([P66614 +][Co(hfacac)3 -]) and trihexyl(tetradecyl) phosphonium tris(phenyltrifluoroacetylaceto)cobaltate(II) ([P66614 +][Co(Phtfacac)3 -]) MIL with a dispersion of the supporting media, polypropylene glycol, at room temperature for up to a 7 and 15 day period, respectively. High-quality RNA treated with ribonuclease A (RNase A) was recovered from the tetra(1-octylimidazole)cobaltate(II) di(l-glutamate) ([Co(OIM)4 2+][Glu-]2) and tetra(1-octylimidazole)cobaltate(II) di(l-aspartate) ([Co(OIM)4 2+][Asp-]2) MILs after a 24 h period at room temperature. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and agarose gel electrophoresis were used to determine the effect of RNA preservation. Furthermore, the preservation mechanism was investigated by exploring the partitioning of RNase A into the MIL using high-performance liquid chromatography.Additive manufacturing, known as three-dimensional (3D) printing technologies, has revolutionized production in all domains of science and technology. Although 3D printing has a high impact on research and development, its capacity to implement low-cost, flexible, and robust sample handling automation has not been exploited in full. To this end, we have created a low-cost, robust, and easy-to-utilize kit to transform an off-the-shelf fused deposition modeling 3D printer to a thin layer chromatography (TLC) sample application device. Our technology solution improves TLC convenience when higher throughput of the established method is required. The developed dual-needle sprayer allows simple and exceptionally robust automatic sample application. The device is especially well-suited for high-performance TLC-assisted method selection in counter-current chromatography. A step-by-step guide and list of required parts, including 3D printable files with instruction, can be obtained from the Supporting Information for research usage and open development.
Website: https://www.selleckchem.com/products/tetrathiomolybdate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team