Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This study prepared silicone hydrogel ophthalmic lenses using 2-hydroxyethylmethacrylate (HEMA), synthesized silicone monomer (SID), dimethylarsinic acid (DMA), N-hydroxyethyl acrylamide (HEA), ethylene glycol dimethacrylate (a crosslinking agent, EGDMA), and azobisisobutyronitrile (an initiator, AIBN). Also, Zirconium oxide (ZrO₂), antimony tin oxide (ATO) nanoparticles were added to the silicone hydrogel material to analyze the characteristics of the nanoparticles. The mixture was heated at 130 °C for 2 hours to produce the ophthalmic contact lens by cast mould method. As a result, the manufactured silicone hydrogel lens was prepared having high oxygen permeability and tensile strength while satisfying the basic requirements of ophthalmic hydrogel lens materials. Also, the addition of ZrO₂ NPs increased tensile strength of the manufactured lens, and ATO NPs were found to improve wettability. Therefore, ZrO₂ and ATO nanoparticles can be used effectively as additives for functional ophthalmic silicone hydrogel lenses.Pt-supported on amine functionalized MIL-101 (Fe) and nitrogen doped multi-walled carbon nanotube (CNT) composites were synthesized by hydrothermal synthesis and pyrolysis process. Electrochemical properties were measured by cyclic voltammetry (CV), chronoamperometry (CA) and structural analysis was done by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FT-IR). As a result, higher electrochemical surface area (ECSA) and methanol oxidation reactions were obtained, and the electrochemical properties of Pt-c(NH₂-MIL-101)@NCNT are better than pristine Pt-c(NH₂-MIL-101). The enhanced activity related with the synergy effect from the higher conductivity of N-doped CNT and the better porous nanostructure of carbonized NH₂-MIL-101(Fe).Electrochemical redox supercapcitor is one of promising rechargeable power sources for portable electronic, display or telecommunication devices since it has a large energy density, very fast charge/discharge time and long life cycle. In this study, poly(3,4-ethylene dioxythiophene) (PEDOT) thin film as the electrode of electrochemical supercapacitor was deposited on a metal current collector by in-situ polymerization method. Symmetrical electrochemical capacitor was then assembled using PEDOT films as working and counter electrodes, where 0.1 M lithium perchlorate (LiClO₄) solution in acetonitrile was used as the electrolyte solution. Typical specific discharge capacitance of the capacitor was about 70 F/g and showed little decrease after 1,000 charge/discharge cycles. We also found that UV irradiation improved the electrochemical properties of redox capacitor by formation of hydrophilic polar groups on PEDOT film surface. After UV irradiation on the surface of PEDOT film for 2 hours with the intensity of 30 mW/cm², the specific discharge capacitance increased by about 10% compared to capacitance of pristine PEDOT film.Considering the relationship between thin film thickness of transparent conductive oxide (TCO) materials and the reversed pulse time in pulsed-direct current (DC) sputtering, aluminum-doped zinc oxide (AZO) films were deposited on glass substrates at different reversed pulse times by changing oxygen/argon (O₂/Ar) gas ratios for window layers of large area CuIn1-xGa x Se₂ (CIGS) solar cells. As a result of the reduced sputtering time, the thickness of AZO film was decreased when the reversed pulsed time was increased. The higher resistance and resistivity of the AZO film was obtained at a higher reversed pulse time. From the structural investigations of AZO such as transmittance and X-ray diffraction (XRD), it was possible to observe the relationship between the crystallinity of AZO and transmittance. Even at the short reversed pulse time of 0.5 µs, it can be concluded that the accumulated charges on the AZO target are completely cleared and the AZO layers show the highest figure of merit (FOM) with low sheet resistance and high transmittance.This research was conducted to analyze the compatibility of used monomers and produce the high functional POSS-based ophthalmic polymer containing silicone monomers and neodymium nanoparticle. StemRegenin 1 manufacturer Synthesized silicone polymer (SiD), trimethylsilylmethacrylate (TSMA), N-vinyl-2-pyrrolidone (NVP) and neodymium nanoparticles were used as additives for the basic combination of polyhedral oligomeric silsesquioxane (POSS), and methyl methacrylate (DMA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator. It is judged that the POSS-co-NVP polymer is optically good and thus have good compatibility. Especially copolymerization with TSMA showed high oxygen permeability, but with SID considered to be more stable judging by lens shape. Physical properties shows that the neodymium nanoparticle increases the wettability while maintaining water content. These materials are considered to make synergy effect each other, so it can be used in functional hydrogel ophthalmic lenses.Based on the migratory phenomenon of the puffer and the cone-shaped structures on its skin, the effects of spinal height and tilt angle on the drag reduction characteristics is presented by numerical simulation in this paper. The results show that the trend of total drag reduction efficiency changes from slow growth to a remarkable decline, while the viscous drag reduction efficiency changes from an obvious increase to steady growth. The total and viscous drag reduction efficiencies are 19.5% and 31.8%, respectively. link2 In addition, with the increase in tilt angle, the total drag reduction efficiency decreases gradually; the viscous drag reduction efficiency first increases and then decreases, finally tending to be stable; and the total and viscous drag reduction efficiency reaches 20.7% and 26.7%, respectively. The flow field results indicate that the pressure drag mainly originates at the front row of the spines and that the total pressure drag can be effectively controlled by reducing the former pressure drag. With the increase in low-speed fluid and the reduction in the near-wall fluid velocity gradient, the viscous drag can be weakened. Nevertheless, the drag reduction effect is achieved only when the decrement of viscous drag is greater than the increment of pressure drag. This work can serve as a theoretical basis for optimizing the structure and distribution parameters of spines on bionic non-smooth surfaces.An electrochemical biosensor for the detection of glucose is realized by immobilizing glucose oxidase (GOx) enzyme onto titanium dioxide nanotube arrays by a coupling encapsulation process. We present details of a robust fabrication technique that results in a durable and reproducible sensor characteristics. The TiO₂ nanotube arrays are grown directly on a titanium substrate by a potentiostatic anodization process in a water and ethylene-glycol mixture solution, which contains ammonium fluoride. An electropolymerization process was also performed to enhance interfacial adhesion between GOx and TiO₂ nanotubes. Detection of glucose concentrations was achieved with a linear response in the range of 0.01 to 0.2 mM. Investigation of enhanced sensitivity by increasing the count, the length, and the cross-section of the nanotubes was also carried out. Surface morphologies of Ti substrate were examined by scanning electron microscopy to optimize the anodization process and thus the TiO₂/Ti nanotube dimensions. We utilized a time-based amperometric response for the quantitative determination of hydrogen peroxide concentration through electro-reduction reaction with a bare TiO₂/Ti nanotube-array electrodes, thus providing a reference for the determination of glucose levels with a GOx-coated TiO₂/Ti nanotube array electrodes. Detection levels down to 5.2 μM were recorded.With the development of thick-film paste, silver and copper are circulating in the market as the electric conductive fillings currently. Unfortunately, the cost of silver is exceedingly high, while the copper has to be sintered in the reducing atmosphere. In this study, we proposed to exert aluminum as the filling due to its low cost, good electrical conductivity, and capability of being sintered in air. By means of the fracture mechanism of the oxidation layer of the Al surface and the liquid phase sintering, the Al paste with high solid content is used to implement high electrical conductivity. Based on that Al powder with large particle size tends to fracture easily, while it is easy for Al powder with small size to fill the gap, we mixed Al powder with large and small particle sizes at different proportion, so that the internal micro-structure and the oxidization are observed. However, when glass frit was added into mixed Al powder, the Al particles are wet by glass frit for bonding Al particles as well as inhibiting oxidation. Effect of the glass frit content and the solid content of Al paste on conductivity are investigated in this study. The sheet resistance of Al paste sintered at 850 °C for 10 min. can be reduced to 4.5 mΩ/□ when Al paste is formulated based on the mixed Al particles with proportion of big to small (41) at 10 wt% glass frit content and 80 wt% solid content.Titanium dioxide nanoparticles (TiO₂ NPs) as food additives were widely found in various foodrelated products, especially in high-sugar foods. The daily intake of TiO₂ NPs in the diet may therefore expose the small intestine to TiO₂ NPs and affect its physiological functions, including the absorption of nutrients. It is speculated that TiO₂ may cause serious health hazards by increasing sugar uptake. To explore this possibility, transport of glucose from small intestine was studied using an everted gut sac model prepared from small intestine of young healthy male SD rats. The translocation of TiO₂ NPs and the morphological changes of small intestine were also observed after exposure of intestinal lumen to TiO₂ NPs for 2 h. The results showed that TiO₂ NPs can enter into enterocyte but hardly cross the intestinal epithelium. link3 No change on microstructure of gut epithelia and expression of glucose transporter was found, and there is no obvious impact on intestinal absorption and metabolism of glucose. These results suggest that short-term exposure to TiO₂ NPs has little influence on intestinal absorption of glucose. More attention should be paid to the chronic effect of dietary consumption of TiO₂ NPs on nutrient absorption.Excess ultraviolet (UV) exposure accelerates skin inflammation, melanogenesis, wrinkle formation, photoaging, and carcinogenesis through oxidative stress and deoxyribonucleic acid damage. These deleterious effects to skin are closely associated with UV-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced via nitric oxide (NO·) generation. RNS are known to be responsible for various skin disorders, such as erythema, melanin production, reduced barrier function, and psoriasis. These skin disorders are major cosmetic problems; RNS control, in addition to ROS control, is important for maintaining healthy skin. In the present study, we investigated the cytoprotective effects of polyvinylpyrrolidone-entrapped fullerene (C60/PVP), a water-soluble ROS scavenger, against nitric oxide (NO·) and peroxynitrite (ONOO-)-induced human keratinocyte injuries. Protective effects of C60/PVP on NO·/ONOO--induced cellular damage and intracellular ONOO- generation were evaluated using a NO· donor S-nitroso-N-acetylpenicillamine (SNAP) in human skin epidermal HaCaT keratinocytes.
Here's my website: https://www.selleckchem.com/products/stemRegenin-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team