NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Position disorders inside two-dimensional BeO monolayer: the first-principles study electronic digital and also magnetic attributes.
The microstructure of alkali-reactive aggregates, especially the spatial distribution of the pore and reactive silica phase, plays a significant role in the process of the alkali silica reaction (ASR) in concrete, as it determines not only the reaction front of ASR but also the localization of the produced expansive product from where the cracking begins. However, the microstructure of the aggregate was either simplified or neglected in the current ASR simulation models. Due to the various particle sizes and heterogeneous distribution of the reactive silica in the aggregate, it is difficult to obtain a representative microstructure at a desired voxel size by using non-destructive computed tomography (CT) or focused ion beam milling combined with scanning electron microscopy (FIB-SEM). In order to fill this gap, this paper proposed a model that simulates the microstructures of the alkali-reactive aggregate based on 2D images. Five representative 3D microstructures with different pore and quartz fractions were simulated from SEM images. The simulated fraction, scattering density, as well as the autocorrelation function (ACF) of pore and quartz agreed well with the original ones. see more A 40×40×40 mm3 concrete cube with irregular coarse aggregates was then simulated with the aggregate assembled by the five representative microstructures. The average pore (at microscale μm) and quartz fractions of the cube matched well with the X-ray diffraction (XRD) and Mercury intrusion porosimetry (MIP) results. The simulated microstructures can be used as a basis for simulation of the chemical reaction of ASR at a microscale.Fused filament fabrication (FFF) is increasingly adopted for direct manufacturing of end use parts in an aviation industry. However, the application of FFF technique is still restricted to manufacturing low criticality lightly loaded parts, due to poor mechanical performance. To alleviate the mechanical performance issue, thermal annealing process is frequently utilized. However, problems such as distortion issues and the need for jigs and fixtures limit the effectiveness of the thermal annealing process, especially for low volume complex FFF parts. In this research, a novel low temperature thermal annealing is proposed to address the limitations in conventional annealing. A modified orthogonal array design is applied to investigate the performance of ULTEM™ 9085 FFF coupons. Further, the coupons are annealed with specialized support structures, which are co-printed with the coupons during the manufacturing process. Once the annealing process is completed, multiscale characterizations are performed to identify the mechanical properties of the specimens. Geometrical measurement of post annealed specimens indicates an expansion in the layering direction, which indicates relief of thermal stresses. Moreover, annealed coupons show an improvement in tensile strength and reduction in strain concentration. Mesostructure and fracture surface analysis indicate an increase in ductility and enhanced coalescence. This research shows that the proposed annealing methodology can be applied to enhance the mechanical performance of FFF parts without significant distortion.Environmental contamination, extensive exploitation of fuel sources and accessibility of natural renewable resources represent the premises for the development of composite biomaterials. These materials have controlled properties, being obtained through processes operated in mild conditions with low costs, and contributing to the valorization of byproducts from agriculture and industry fields. A novel board composite including lignocelullosic substrate as wheat straws, fungal mycelium and polypropylene embedded with bacterial spores was developed and investigated in the present study. The bacterial spores embedded in polymer were found to be viable even after heat exposure, helping to increase the compatibility of polymer with hydrophilic microorganisms. Fungal based biopolymer composite was obtained after cultivation of Ganoderma lucidum macromycetes on a mixture including wheat straws and polypropylene embedded with spores from Bacillus amyloliquefaciens. Scanning electron microscopy (SEM) and light microscopy images showed the fungal mycelium covering the substrates with a dense network of filaments. The resulted biomaterial is safe, inert, renewable, natural, biodegradable and it can be molded in the desired shape. The fungal biocomposite presented similar compressive strength and improved thermal insulation capacity compared to polystyrene with high potential to be used as thermal insulation material for applications in construction sector.The availability of a wide range of online health-related information on the internet has made it an increasingly popular source of health information, particularly for people in their 20s. This study aimed to explore possible multistep and indirect pathways of association between e-health literacy and health-promoting behaviors through social media use for health information, online health information-seeking behaviors, and self-care agency among nursing students. The study included 558 nursing students from three different universities in South Korea. Data were collected using structured questionnaires from 2 August to 29 August, 2019. The results show that e-health literacy had a significant direct effect on health-promoting behaviors through the three mediators. Moreover, the overall model explained 46% of the total variance in health-promoting behaviors. Based on these findings, it is necessary to introduce interventions that improve e-health literacy and develop a strategy to promote healthy behaviors. It is also necessary to develop programs to improve e-health literacy competency in nursing students. Moreover, health interventions that improve health-promoting behaviors should be developed, and research to evaluate the effect of the interventions should be conducted.Titanium implants are commonly used because of several advantages, but their surface modification is necessary to enhance bioactivity. Recently, their surface coatings were developed to induce local antibacterial properties. The aim of this research was to investigate and compare mechanical properties of three coatings multi-wall carbon nanotubes (MWCNTs), bi-layer composed of an inner MWCNTs layer and an outer TiO2 layer, and dispersion coatings comprised of simultaneously deposited MWCNTs and nanoCu, each electrophoretically deposited on the Ti13Nb13Zr alloy. Optical microscopy, scanning electron microscopy, X-ray electron diffraction spectroscopy, and nanoindentation technique were applied to study topography, chemical composition, hardness, plastic and elastic properties. The results demonstrate that the addition of nanocopper or titanium dioxide to MWCNTs coating increases hardness, lowers Young's modulus, improves plastic and elastic properties, wear resistance under deflection, and plastic deformation resistance. The results can be attributed to different properties, structure and geometry of applied particles, various deposition techniques, and the possible appearance of porous structures. These innovative coatings of simultaneously high strength and elasticity are promising to apply for deposition on long-term titanium implants.Clonorchis sinensis, a high-risk pathogenic human liver fluke, provokes various hepatobiliary complications, including epithelial hyperplasia, inflammation, periductal fibrosis, and even cholangiocarcinogenesis via direct contact with worms and their excretory-secretory products (ESPs). These pathological changes are strongly associated with persistent increases in free radical accumulation, leading to oxidative stress-mediated lesions. The present study investigated C. sinensis infection- and/or carcinogen N-nitrosodimethylamine (NDMA)-associated fibrosis in cell culture and animal models. The treatment of human cholangiocytes (H69 cells) with ESPs or/and NDMA increased reactive oxidative species (ROS) generation via the activation of NADPH oxidase (NOX), resulting in augmented expression of fibrosis-related proteins. These increased expressions were markedly attenuated by preincubation with a NOX inhibitor (diphenyleneiodonium chloride) or an antioxidant (N-acetylcysteine), indicating the involvement of excessive NOX-dependent ROS formation in periductal fibrosis. The immunoreactive NOX subunits, p47phox and p67phox, were observed in the livers of mice infected with C. sinensis and both infection plus NDMA, concomitant with collagen deposition and immunoreactive fibronectin elevation. Staining intensities are proportional to lesion severity and infection duration or/and NDMA administration. Thus, excessive ROS formation via NOX overactivation is a detrimental factor for fibrogenesis during liver fluke infection and exposure to N-nitroso compounds.
Point-of-care ultrasound (POCUS) is the most rapidly growing imaging modality for acute care. Despite increased use, there is still wide variability and less evidence regarding its clinical utility for the perioperative setting compared to other acute care settings. This study sought to demonstrate the impact of POCUS examinations for acute hypoxia and hypotension occurring in the post-anesthesia care unit (PACU) versus traditional bedside examinations.

This study was designed as a multi-center prospective observational study. Adult patients who experienced a reduced mean arterial blood pressure (MAP < 60mmHG) and/or a reduced oxygen saturation (SpO2 < 88%) in the PACU from 7AM to 4PM were targeted. POCUS was available or not for patient assessment based on PACU team training. All providers who performed POCUS exams received standardized training on cardiac and pulmonary POCUS. All POCUS exam findings were recorded on a standardized form and the number of suspected mechanisms to trigger the acute evspected number of diagnoses.The objective of this study was to determine the chemical composition, fatty acid profile, and values of healthy indices of milk from a specialized farm of Polish Coldblood mares of different ages, birth orders, and lactation stages. Milk samples (n = 48) were collected for analysis in weeks 10, 15, and 25 of lactation from mares aged between five and 14 years. The study showed that the stage of lactation has a significant effect on the fatty acid (FA) profile of the milk produced on the farm. The highest concentration of monounsaturated and polyunsaturated FAs was found in milk produced from the 15th week of lactation. The milk was also characterized by low values of atherogenic and thrombogenic indices, which indicate the health benefits of milk with respect to the content of fatty acids and their potential to prevent or cause atherosclerosis and thrombosis. The study also found a significant correlation between the number of foalings (birth order), the fatty acid profile, and atherogenic index of milk produced on the farm. The findings from the study indicate that it is possible to modify the fatty acid profile of bulk tank milk through appropriate management of the age structure of the herd of mares. To confirm this dependence, the study will be continued on a larger group of mares.
Homepage: https://www.selleckchem.com/products/elenbecestat.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.