Notes
![]() ![]() Notes - notes.io |
Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions. © 2020 Cohen et al.OBJECTIVE With drug trials starting soon, responsive, relevant, and patient-friendly biomarkers are highly needed in facioscapulohumeral dystrophy (FSHD). Our objective was to assess muscle ultrasound (MUS) as an imaging biomarker in patients with FSHD. METHODS One-year observational, longitudinal study of both quantitative and qualitative MUS changes in FSHD. RESULTS Twenty-two patients with symptomatic FSHD1 underwent a clinical examination and MUS at baseline and after 1-year follow-up. The qualitative MUS sum score increased from 18.59 to 20.32 (p = 0.005) and the quantitative MUS sum z scores increased from 19.96 to 24.72 (p = 0.003). The clinical scores did not change over 1 year. Muscle echogenicity correlated with the FSHD clinical score at baseline (r = 0.61, p = 0.002). CONCLUSIONS MUS shows a significant increase in echogenicity in FSHD over 1 year. Both quantitative and qualitative MUS correlate cross-sectionally with clinical severity in FSHD and identify structural muscle changes in a clinically stable group of patients. MUS thus seems a potentially responsive biomarker that could be standardized between centers. We recommend its use in therapeutic trials. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that in patents with FSHD1, MUS findings correlate with baseline FSHD clinical scores. © 2020 American Academy of Neurology.The evolution of broadcast audio has been rapidly changing over the past 10-15 years with the advent of podcasts in the early 2000s. As with other media, podcast audio has been adapted for use within medical and specifically neurology education in the form of the Neurology Podcast since 2007. As podcasts were an initial step in the field of on-demand media, further technological evolution has resulted in increasing customization of a listener's audio experience. NSC 644468 We believe a historical inflection point has been reached with the increasingly mainstream adoption of virtual assistant technology which allows for consumption of brief on-demand self-curated audio productions. As editors of the Neurology Podcast, we have introduced a new audio product to this technological landscape, the Neurology Minute. In doing so, we hope that curated on-demand educational audio will become a part of the daily routine of many practicing neurologists as we move into this new technological age. © 2020 American Academy of Neurology.OBJECTIVES To systematically review the literature for reversible diffusion-weighted imaging (DWIR) lesions and to describe its prevalence, predictors, and clinical significance. METHODS Studies were included if the first DWI MRI was performed within 24 hours of stroke onset and follow-up DWI or fluid-attenuated inversion recovery (FLAIR)/T2 was performed within 7 or 90 days, respectively, to measure DWIR. We abstracted clinical, imaging, and outcomes data. RESULTS Twenty-three studies met the study criteria. The prevalence of DWIR was 26.5% in DWI-based studies and 6% in FLAIR/T2-based studies. DWIR was associated with recanalization or reperfusion of the ischemic tissue with or without the use of tissue plasminogen activator (t-PA) or endovascular therapy, earlier treatment with t-PA, shorter time to endovascular therapy after MRI, and absent or less severe perfusion deficit within the DWI lesion. DWIR was associated with early neurologic improvement in 5 of 6 studies (defined as improvement in the NIH Stroke Scale (NIHSS) score by 4 or 8 points from baseline or NIHSS score 0 to 2 at 24 hours after treatment or at discharge or median NIHSS score at 7 days) and long-term outcome in 6 of 7 studies (defined as NIHSS score ≤1, improvement in the NIHSS score ≥8 points, or modified Rankin Scale score up to ≤2 at 30 or 90 days) likely due to reperfusion. CONCLUSIONS DWIR is seen in up to a quarter of patients with acute ischemic stroke, and it is associated with good clinical outcome following reperfusion. Our findings highlight the pitfalls of DWI to define ischemic core in the early hours of stroke. © 2020 American Academy of Neurology.β-1,3-D-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring β-1,6-glucan, another primary β-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly sensitive and specific assay for β-1,6-glucan using a modified recombinant endo-β-1,6-glucanase having diminished glucan hydrolase activity. The purified β-1,6-glucanase derivative bound to the β-1,6-glucan pustulan with a KD of 16.4 nM. We validated the specificity of this β-1,6-glucan probe by demonstrating its ability to detect cell wall β-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen Candida albicans, without any detectable binding to glucan lacking the long β-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and successfully employed this assay in the quantification of extracellular β-1,6-glucan released by >250 patient-derived strains of different Candida species (including Candida auris) in culture supernatant in vitro. We also used this assay to measure β-1,6-glucan in vivo in the serum and several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for β-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections. link2 Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 μM and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a). Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Obesity and elevation of circulating free fatty acids are associated with an accumulation and pro-inflammatory polarization of macrophages within metabolically active tissues such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. link3 Here, we used a cell culture system as proof-of-concept to show that upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we find that palmitate upregulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, previously shown to allow transfer of nucleotides across membranes. These findings suggest that pro-inflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Following its evoked release, DA signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DAT. DAT surface availability is dynamically regulated by endocytic trafficking, and direct PKC activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals, or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surfaceintracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation, and that the DAT N-terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization, and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
My Website: https://www.selleckchem.com/products/deferoxamine-mesylate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team