Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Ligand-induced chirality in asymmetric CdSe/CdS core-shell nanocrystals (NCs) has been extensively applied in chiral biosensors, regioselective syntheses and assemblies, circularly polarized luminescence (CPL), and chiroptic-based devices due to their excellent physiochemical properties, such as the tunable quantum confinement effects, surface functionality, and chemical stability. Herein, we present CdSe/CdS NCs with various morphologies such as nanoflowers, tadpoles, and dot/rods (DRs) with chirality induced by surface chiral ligands. The observed circular dichroism (CD) and CPL activities are closely associated with the geometrical characteristics of the nanostructures, such as the shell thickness and the aspect ratio of the CdSe/CdS NCs. Furthermore, in situ observations of the growth of tadpoles with a single tail indicate that the CD response is mainly attributed to the CdS shell, which has a maximum tail length of ∼45 nm (approximately λ/10 of the incident light wavelength). MK-0859 nmr On the other hand, the CPL activity is only related to the CdSe core, and the activity benefits from a thin CdS shell with a relatively high photoluminescence quantum yield (QY). Further theoretical models demonstrated the aspect-ratio-dependent g-factor and QY variations in these asymmetric nanostructures. These findings provide insights into not only the asymmetric synthesis of CdSe/CdS NCs, but also the rational design of CdSe/CdS nanostructures with tunable CD and CPL activities.Sepsis is an aberrant systemic inflammatory response mediated by excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Developing an efficient antioxidant therapy for sepsis via scavenging ROS and RNS remains a big challenge owing to the insufficient activity and sustainability of conventional antioxidants. Herein, biocompatible transition-metal dichalcogenide antioxidants with excellent scavenging activity and sustainability for H2O2, O2•-, OH•, and nitric oxide are developed for effective sepsis treatment. WS2, MoSe2, and WSe2 nanosheets exfoliated and functionalized with a biocompatible polymer effectively scavenge mitochondrial and intracellular ROS and RNS in inflammatory cells. Among the nanosheets, WS2 most efficiently suppresses the excessive secretion of inflammatory cytokines along with scavenging ROS and RNS without affecting the expression levels of the anti-inflammatory cytokine and ROS-producing enzymes. The WS2 nanosheets significantly improve the survival rate up to 90% for severely septic mice by reducing systemic inflammation. The pharmacokinetics suggests that the WS2 nanosheets can be excreted from mice 3 days after intravenous injection. This work demonstrates the potential of therapeutic nanosheet antioxidants for effective treatment of ROS and RNS-related diseases.Natural killer (NK) cell-based immunotherapy represents a promising strategy to overcome the bottlenecks of cancer treatment. However, the therapeutic efficacy is greatly limited by downregulation of recognition ligands on the tumor cell surface, and the immunosuppressive effects can be thwarted by the tumor microenvironment such as secretion of transforming growth factor-beta (TGF-β), which could stunt the NK cell-mediated immune response. To overcome these limitations, herein we developed a nanoemulsion system (SSB NMs) to co-deliver TGF-β inhibitor and selenocysteine (SeC) to achieve amplified anticancer efficacy. SSB NMs significantly enhanced the lytic potency of NK92 cells by 2.1-fold. Moreover, a subtoxic dose of SSB NMs effectively sensitized MDA-MB-231 triple-negative breast cancer (TNBC) cells to NK cells derived from seven clinical patients, resulting in an up to 13.8-fold increase in cancer lysis. Mechanistic studies reveal that the sensitizing effects relied on natural killer group 2, member D (NKG2D)/NKG2D ligands (NKG2DLs) signaling with the involvement of DNA damage response. SSB NMs also effectively restrained TGF-β/TGF-β RI/Smad2/3 signaling, which thus enhanced NKG2DL expression on tumor cells and stimulated NKG2D surface expression on NK92 cells, ultimately contributing to the enhanced immune response. Furthermore, SSB NMs sustained release of SeC and TGF-β inhibitor and synergized with NK92 cells to induce significant anticancer effects in vivo. link2 Together, this study not only demonstrates a simple strategy for the design of a nanoemulsion to co-deliver synergistic drugs but also sheds light on the application and action mechanisms in NK cell adaptive therapy against breast cancer, especially TNBCs.Photoacoustic (PA) imaging is an emerging imaging modality whereby pulsed laser illumination generates pressure transients that are detectable using conventional ultrasound. Plasmonic nanoparticles such as gold nanorods and nanostars are often used as PA contrast agents. The thermoelastic expansion model best describes the PA response from plasmonic nanoparticles Light absorption causes a small increase in temperature leading to thermoelastic expansion. The conversion of optical energy into pressure waves (po) is dependent on several features (i) the absorption coefficient (μa), (ii) the thermal expansion coefficient (β), (iii) specific heat capacity (Cp) of the absorbing material, (iv) speed of sound in the medium (c), and (v) the illumination fluence (F). Controlling the geometry, composition, coatings, and solvents around plasmonic nanostructures can help tune these variables to generate the optimum PA signal. The thermoelastic expansion model is not limited to plasmonic structures and holds true for all absorbing molecules. Here, we focus on ways to engineer these variables to enhance the PA response from plasmonic nanoparticles.Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.Engineering of nonlinear optical response in nanostructures is one of the key topics in nanophotonics, as it allows for broad frequency conversion at the nanoscale. Nevertheless, the application of the developed designs is limited by either high cost of their manufacturing or low conversion efficiencies. This paper reports on the efficient second-harmonic generation in a free-standing GaP nanowire array encapsulated in a polymer membrane. Light coupling with optical resonances and field confinement in the nanowires together with high nonlinearity of GaP material yield a strong second-harmonic signal and efficient near-infrared (800-1200 nm) to visible upconversion. The fabricated nanowire-based membranes demonstrate high flexibility and semitransparency for the incident infrared radiation, allowing utilizing them for infrared imaging, which can be easily integrated into different optical schemes without disturbing the visualized beam.In recent years, imprint lithography has emerged as a promising patterning technique capable of high-speed and volume production. In this work, we report highly reproducible one-step printing of metal nanocubes. A dried film of monocrystalline silver cubes serves as the resist, and a soft polydimethylsiloxane stamp directly imprints the final pattern. The use of atomically smooth and sharp faceted nanocubes facilitates the printing of high-resolution and well-defined patterns with face-to-face alignment between adjacent cubes. It also permits digital control over the line width of patterns such as straight lines, curves, and complex junctions over an area of several square millimeters. link3 Single-particle lattices as well as three-dimensional nanopatterns are also demonstrated with an aspect ratio up to 5 in the vertical direction. The high-fidelity nanocube patterning combined with the previously demonstrated epitaxial overgrowth can enable curved (single) crystals from solution at room temperature or highly efficient transparent conductors.Jammed packings of bidisperse nanospheres were assembled on a nonvolatile liquid surface and visualized to the single-particle scale by using an in situ scanning electron microscopy method. The PEGylated silica nanospheres, mixed at different number fractions and size ratios, had large enough in-plane mobilities prior to jamming to form uniform monolayers reproducibly. From the collected nanometer-resolution images, local order and degree of mixing were assessed by standard metrics. For equimolar mixtures, a large-to-small size ratio of about 1.5 minimized correlated metrics for local orientational and positional order, as previously predicted in simulations of bidisperse disk jamming. Despite monolayer uniformity, structural and depletion interactions caused spheres of a similar size to cluster, a feature evident at size ratios above 2. Uniform nanoparticle monolayers of high packing disorder are sought in many liquid interface technologies, and these experiments outlined key design principles, buttressing extensive theory/simulation literature on the topic.The past years have witnessed major advancements in all-electrical doping control on cuprates. In the vast majority of cases, the tuning of charge carrier density has been achieved via electric field effect by means of either a ferroelectric polarization or using a dielectric or electrolyte gating. Unfortunately, these approaches are constrained to rather thin superconducting layers and require large electric fields in order to ensure sizable carrier modulations. In this work, we focus on the investigation of oxygen doping in an extended region through current-stimulated oxygen migration in YBa2Cu3O7-δ superconducting bridges. The underlying methodology is rather simple and avoids sophisticated nanofabrication process steps and complex electronics. A patterned multiterminal transport bridge configuration allows us to electrically assess the directional counterflow of oxygen atoms and vacancies. Importantly, the emerging propagating front of current-dependent doping δ is probed in situ by optical microscopy and scanning electron microscopy. The resulting imaging techniques, together with photoinduced conductivity and Raman scattering investigations, reveal an inhomogeneous oxygen vacancy distribution with a controllable propagation speed permitting us to estimate the oxygen diffusivity. These findings provide direct evidence that the microscopic mechanism at play in electrical doping of cuprates involves diffusion of oxygen atoms with the applied current. The resulting fine control of the oxygen content would permit a systematic study of complex phase diagrams and the design of electrically addressable devices.
Homepage: https://www.selleckchem.com/products/anacetrapib-mk-0859.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team