Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Results Histological images showed that the genipin-crosslinked scaffold did not destroy the structure of the scaffold, and the collagen fibers in the scaffold was more regular, and the outline of the glomerulus was clearer than uncrosslinked scaffold. The results of casting showed that the vascular structure of genipin-crosslinked scaffold was still intact. The anti-degradation ability test showed that the anti-degradation ability of genipin-crosslinked scaffold was significantly higher than that of the uncrosslinked scaffold. Cell culture experiments showed that the genipin-crosslinked scaffold had no cytotoxicity and promoted cell proliferation to some extent. In vivo scaffold transplantation experiments further demonstrated that the genipin-crosslinked scaffold had better anti-degradation and anti-inflammatory ability. Conclusion Genipin-crosslinked rat kidney scaffold complemented kidney defects in rats can enhance scaffold-induced kidney regeneration and repair.Brucellosis is a zoonotic disease caused by Brucella, and it is an important infectious disease all over the world. The prevalence of brucellosis in the Chinese mainland has some spatial characteristics besides the temporal trend in recent years. Due to the large-scale breeding of sheep and the frequent transportation of sheep in various regions, brucellosis spreads wantonly in pastoral areas, and human brucellosis spreads from traditional pastoral areas and semi-pastoral areas in the north to non-pastoral areas with low incidence in the south. In order to study the influence of sheep immigration on the epidemic transmission, a patch dynamics model was established. In each patch, the sub-model was composed of humans, sheep and Brucella. The basic reproduction number, disease-free equilibrium and positive equilibrium of the model were discussed. On the other hand, taking Shanxi Province and Hebei Province as examples, we carried out numerical simulations. The results show that the basic reproduction numbers of Shanxi Province and Hebei Province are 0.7497 and 0.5022, respectively, which indicates that the current brucellosis in the two regions has been effectively controlled. To reduce brucellosis faster in the two provinces, there should be a certain degree of sheep immigration from high-infection area to low-infection areas, and reduce the immigration of sheep from low-infection areas to high-infection areas.It has been proposed that the proportions of the human face are crucial for facial aesthetics. If this is the case, we should describe the relationship among proportions of face components quantitatively. This study aims to develop a mathematical model of facial proportions to provide a quantitative description of facial attractiveness. Furthermore, we expect that plastic surgeons can use models in clinical work to enhance communication efficiency between doctors and patients. Face alignment technique was used to analyse 5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) to obtain the ratios among the nose length ($ N_L $), the nasal base width ($ N $), and the inner canthus width ($ E_I $). A mathematical model ($ N_L^2 = aE_Imathrm*N_L+bE_Imathrm*N+cNmathrm*N_L $) was developed to describe the relationship among these proportions. To validate the effectiveness of this approach, we simulated the post-operative photos using Adobe Photoshop. Our findings show that the ratio of nose length to nose width, the ratio of inner canthus width to nose length and the ratio of inner canthus to nose width play a significant role in determining facial attractiveness. These results provide a possible strategy to quantitatively describe the relationship among human face proportions.In this study, an adaptive modified reaching law-based switch controller design was developed for robotic manipulator systems using the disturbance observer (DO) approach. Firstly, a standard DO is employed to estimate the unknown disturbances of the plant, from which the control signal could be compensated. Then, an adaptive modified reaching law is established to dynamically adapt the switching gain of the sliding mode robust term and further guarantee the finite-time arrival of the established sliding surface. Additionally, the convergence of the error system is analyzed via the Lyapunov method. At last, the feasibility and effectiveness of the proposed control scheme are verified by using a two-joint robotic manipulator model. The simulation results show that the developed controller can achieve rapid tracking, reduce system chattering and improve the robustness of the plant. The main innovations of the work are as follows. 1) A new adaptive reaching law is proposed; it can reduce chattering effectively, and it has a fast convergence speed. 2) Regarding the nonlinear robotic manipulator model, a novel adaptive sliding-mode controller was synthesized based on the DO to estimate the unknown disturbance and ensure effective tracking of the desired trajectory.Osteoarthritis (OA) is the most common degenerative joint disease caused by osteoblastic lineage cells. However, a comprehensive molecular program for osteoblasts in human OA remains underdeveloped. The single-cell gene expression of osteoblasts and microRNA array data were from human. After processing the single-cell RNA sequencing (scRNA-seq) data, it was subjected to principal component analysis (PCA) and T-Stochastic neighbor embedding analysis (TSNE). Differential expression analysis was aimed to find marker genes. Gene-ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis (GSEA) were applied to characterize the molecular function of osteoblasts with marker genes. Protein-protein interaction (PPI) networks and core module were established for marker genes by using the STRING database and Cytoscape software. All nodes in the core module were considered to be hub genes. Subsequently, we predicted the potential miRNA of hub gener molecular function in the subchondral bone region may be involved in the pathogenesis of osteoarthritis.High throughput biological experiments are expensive and time consuming. For the past few years, many computational methods based on biological information have been proposed and widely used to understand the biological background. However, the processing of biological information data inevitably produces false positive and false negative data, such as the noise in the Protein-Protein Interaction (PPI) networks and the noise generated by the integration of a variety of biological information. How to solve these noise problems is the key role in essential protein predictions. An Identifying Essential Proteins model based on non-negative Matrix Symmetric tri-Factorization and multiple biological information (IEPMSF) is proposed in this paper, which utilizes only the PPI network proteins common neighbor characters to develop a weighted network, and uses the non-negative matrix symmetric tri-factorization method to find more potential interactions between proteins in the network so as to optimize the weighted network. Then, using the subcellular location and lineal homology information, the starting score of proteins is determined, and the random walk algorithm with restart mode is applied to the optimized network to mark and rank each protein. We tested the suggested forecasting model against current representative approaches using a public database. Experiment shows high efficiency of new method in essential proteins identification. The effectiveness of this method shows that it can dramatically solve the noise problems that existing in the multi-source biological information itself and cased by integrating them.Mathematical modeling of epidemic diseases is increasingly being used to respond to emerging diseases. selleck chemical Although conditions modeled by SIS dynamics will eventually reach either a disease-free steady-state or an endemic steady state without interventions, it is desirable to eradicate the disease as quickly as possible by introducing a control scheme. Here, we investigate the control methods of epidemic models on dynamic networks with temporary link deactivation. A quick link deactivation mechanism can simulate a community effort to reduce the risk of infection by temporarily avoiding infected neighbors. Once infected individuals recover, the links between the susceptible and recovered are activated. Our study suggests that a control scheme that has been shown ineffective in controlling dynamic network models may yield effective responses for networks with certain types of link dynamics, such as the temporary link deactivation mechanisms. We observe that a faster and more effective eradication could be achieved by updating control schemes frequently.Since the COVID-19 outbreak began in early 2020, it has spread rapidly and threatened public health worldwide. Vaccination is an effective way to control the epidemic. In this paper, we model a SAIM equation. Our model involves vaccination and the time delay for people to change their willingness to be vaccinated, which is influenced by media coverage. Second, we theoretically analyze the existence and stability of the equilibria of our model. Then, we study the existence of Hopf bifurcation related to the two equilibria and obtain the normal form near the Hopf bifurcating critical point. Third, numerical simulations based two groups of values for model parameters are carried out to verify our theoretical analysis and assess features such as stable equilibria and periodic solutions. To ensure the appropriateness of model parameters, we conduct a mathematical analysis of official data. Next, we study the effect of the media influence rate and attenuation rate of media coverage on vaccination and epidemic control. The analysis results are consistent with real-world conditions. Finally, we present conclusions and suggestions related to the impact of media coverage on vaccination and epidemic control.The present paper focuses on the controllability of the aviation supply chain network and establishes the judgment criterion for structural controllability of the aviation supply chain network. We determine the control effect by applying the control input to different nodes in the aviation supply chain network. These control nodes include the core enterprises of the aviation supply chain network, the upstream suppliers, and the downstream distributors. It is observed that the control effect is better when the control input is applied to the upstream suppliers of the aviation supply chain network than to the core enterprises of the aviation supply chain network. It is also more desirable to apply the control input to the core enterprises than to the distributors. That is, the control effect is the weakest when the control input is applied to the distributors, whereas the effect is best on application of the control to the upstream suppliers in the supply chain (that is, by choosing the upstream suppliers as the controlled nodes in the aviation supply chain network).In real-life experiments, collecting complete data is time-, finance-, and resources-consuming as stated by statisticians and analysts. Their goal was to compromise between the total time of testing, the number of units under scrutiny, and the expenditures paid through a censoring scheme. Comparing failure-censored schemes (Type-Ⅱ and Progressive Type-Ⅱ) to Time-censored schemes (Type-Ⅰ), it's worth noting that the former is time-consuming and is no more suitable to be applied in real-life situations. This is the reason why the Type-Ⅰ adaptive progressive hybrid censoring scheme has exceeded other failure-censored types; Time-censored types enable analysts to accomplish their trials and experiments in a shorter time and with higher efficiency. In this paper, the parameters of the inverse Weibull distribution are estimated under the Type-Ⅰ adaptive progressive hybrid censoring scheme (Type-Ⅰ APHCS) based on competing risks data. The model parameters are estimated using maximum likelihood estimation and Bayesian estimation methods.
My Website: https://www.selleckchem.com/products/cpi-613.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team