NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Technique handbook regarding Western Affiliation for Cardio-Thoracic Surgical procedure (EACTS) scientific suggestions.
Finally we perform an analysis of the peak (intended, in our study, as the maximum of the daily total severe infected) and an estimation of how many lives have been saved by means of the LockDown.The novel Covid-19 was identified in Wuhan China in December, 2019 and has created medical emergency world wise and distorted many life in the couple of month, it is being burned challenging situation for the medical scientist and virologists. Fractional order derivative based modeling is quite important to understand the real world problems and to analyse realistic situation of the proposed model. In the present investigation a fractional model based on Caputo-Fabrizio fractional derivative has been developed for the transmission of CORONA VIRUS (COVID-19) in Wuhan China. The existence and uniqueness solutions of the fractional order derivative has been investigated with the help of fixed point theory. Adamas- Bashforth numerical scheme has been used in the numerical simulation of the Caputo-Fabrizio fractional order derivative. TWS119 The analysis of susceptible population, exposed population, infected population, recovered population and concentration of the virus of COVID-19 in the surrounding environment with respect to time for different values of fractional order derivative has been shown by means of graph. The comparative analysis has also been performed from classical model and fractional model along with the certified experimental data.COVID-19 blocked Wuhan in China, which was sealed off on Chinese New Year's Eve. During this period, the research on the relevant topics of COVID-19 and emotional expressions published on social media can provide decision support for the management and control of large-scale public health events. The research assisted the analysis of microblog text topics with the help of the LDA model, and obtained 8 topics ("origin", "host", "organization", "quarantine measures", "role models", "education", "economic", "rumor") and 28 interactive topics. Obtain data through crawler tools, with the help of big data technology, social media topics and emotional change characteristics are analyzed from spatiotemporal perspectives. The results show that (1) "Double peaks" feature appears in the epidemic topic search curve. Weibo on the topic of the epidemic gradually reduced after January 24. However, the proportion of epidemic topic searches has gradually increased, and a "double peaks" phenomenon appeared within a week; (2) T and provide decision support for macro-control response strategies and measures and risk communication.Coronavirus is an epidemic that spreads very quickly. For this reason, it has very devastating effects in many areas worldwide. It is vital to detect COVID-19 diseases as quickly as possible to restrain the spread of the disease. The similarity of COVID-19 disease with other lung infections makes the diagnosis difficult. In addition, the high spreading rate of COVID-19 increased the need for a fast system for the diagnosis of cases. For this purpose, interest in various computer-aided (such as CNN, DNN, etc.) deep learning models has been increased. In these models, mostly radiology images are applied to determine the positive cases. Recent studies show that, radiological images contain important information in the detection of coronavirus. In this study, a novel artificial neural network, Convolutional CapsNet for the detection of COVID-19 disease is proposed by using chest X-ray images with capsule networks. link2 The proposed approach is designed to provide fast and accurate diagnostics for COVID-19 diseases with binary classification (COVID-19, and No-Findings), and multi-class classification (COVID-19, and No-Findings, and Pneumonia). The proposed method achieved an accuracy of 97.24%, and 84.22% for binary class, and multi-class, respectively. It is thought that the proposed method may help physicians to diagnose COVID-19 disease and increase the diagnostic performance. In addition, we believe that the proposed method may be an alternative method to diagnose COVID-19 by providing fast screening.The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.COVID-19 or SARS-Cov-2, affecting 6 million people and more than 300,000 deaths, the global pandemic has engulfed more than 90% countries of the world. The virus started from a single organism and is escalating at a rate of 3% to 5% daily and seems to be a never ending process. Understanding the basic dynamics and presenting new predictions models for evaluating the potential effect of the virus is highly crucial. In present work, an evolutionary data analytics method called as Genetic programming (GP) is used to mathematically model the potential effect of coronavirus in 15 most affected countries of the world. Two datasets namely confirmed cases (CC) and death cases (DC) were taken into consideration to estimate, how transmission varied in these countries between January 2020 and May 2020. Further, a percentage rise in the number of daily cases is also shown till 8 June 2020 and it is expected that Brazil will have the maximum rise in CC and USA have the most DC. Also, prediction of number of new CC and DC cases for every one million people in each of these countries is presented. The proposed model predicted that the transmission of COVID-19 in China is declining since late March 2020; in Singapore, France, Italy, Germany and Spain the curve has stagnated; in case of Canada, South Africa, Iran and Turkey the number of cases are rising slowly; whereas for USA, UK, Brazil, Russia and Mexico the rate of increase is very high and control measures need to be taken to stop the chains of transmission. Apart from that, the proposed prediction models are simple mathematical equations and future predictions can be drawn from these general equations. From the experimental results and statistical validation, it can be said that the proposed models use simple linkage functions and provide highly reliable results for time series prediction of COVID-19 in these countries.The present text discusses some basic considerations on the dynamics of the coronavirus pandemic, in particular in France. The goal is not to make accurate predictions, which is probably impossible, but to illustrate some general qualitative behaviors which may be observed. The conclusions of the text only correspond to consequences of the models discussed here, where the parameters are roughly estimated as a function of the evolution of the number of deaths due to COVID-19. They are of course not definitive and are subject to possibly important modifications, due to new information or applications of less simplistic models.In this brief work we present a novel approach to the logistic dynamics of populations and epidemic spreading that can take into account of the complex nature of such a process in several real situations, where due to different agents the dynamics is no longer characterized by a single characteristic timescale, but conversely by a distribution of time scales, rendered via a time-dependent growth rate. In detail, a differential equation containing a power-law time dependent growth rate is proposed, whose solution, named Stretched Logistic Function, provides a modified version of the usual logistic function. The model equation is inspired by and applied to the recent spreading on COVID-19 disease in Italy, showing how the real dynamics of infection spreading is characterized by a time dependent dynamics. A speculative discussion of the Stretched Logistic Function in relation to diffusion processes is attempted.COVID-19 potentially threatens the lives and livelihood of people all over the world. The disease is presently a major health concern in Ghana and the rest of the world. Although, human to human transmission dynamics has been established, not much research is done on the dynamics of the virus in the environment and the role human play by releasing the virus into the environment. Therefore, investigating the human-environment-human by use of mathematical analysis and optimal control theory is relatively necessary. link3 The dynamics of COVID-19 for this study is segregated into compartments as Susceptible (S), Exposed (E), Asymptomatic (A), Symptomatic (I), Recovered (R) and the Virus in the environment/surfaces (V). The basic reproduction number R 0 without controls is computed. The application of Lyapunov's function is used to analyse the global stability of the proposed model. We fit the model to real data from Ghana in the time window 12th March 2020 to 7th May 2020, with the aid of python programming language uve strategy among all the six control intervention strategies under consideration.Different countries - and sometimes different regions within the same countries - have adopted different strategies in trying to contain the ongoing COVID-19 epidemic; these mix in variable parts social confinement, early detection and contact tracing. In this paper we discuss the different effects of these ingredients on the epidemic dynamics; the discussion is conducted with the help of two simple models, i.e. the classical SIR model and the recently introduced variant A-SIR (arXiv2003.08720) which takes into account the presence of a large set of asymptomatic infectives.The novel coronavirus disease 2019 (COVID-19), detected in Wuhan City, Hubei Province, China in late December 2019, is rapidly spreading and affecting all countries in the world. Real-time reverse transcription-polymerase chain reaction (RT-PCR) test has been described by the World Health Organization (WHO) as the standard test method for the diagnosis of the disease. However, considering that the results of this test are obtained between a few hours and two days, it is very important to apply another diagnostic method as an alternative to this test. The fact that RT-PCR test kits are limited in number, the test results are obtained in a long time, and the high probability of healthcare personnel becoming infected with the disease during the test, necessitates the use of other diagnostic methods as an alternative to these test kits. In this study, a hybrid model consisting of two-dimensional (2D) curvelet transformation, chaotic salp swarm algorithm (CSSA) and deep learning technique is developed in order to determine the patient infected with coronavirus pneumonia from X-ray images.
Homepage: https://www.selleckchem.com/products/TWS119.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.