NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Tuning the Launching and Relieve Properties regarding MicroRNA-Silencing Porous Plastic Nanoparticles by Using Chemical Different Peptide Nucleic Acidity Payloads.
During the past decades, many automated image analysis methods have been developed for colonoscopy. Realtime implementation of the most promising methods during colonoscopy has been tested in clinical trials, including several recent multi-center studies. All trials have shown results that may contribute to prevention of colorectal cancer. We summarize the past and present development of colonoscopy video analysis methods, focusing on two categories of artificial intelligence (AI) technologies used in clinical trials. These are (1) analysis and feedback for improving colonoscopy quality and (2) detection of abnormalities. Our survey includes methods that use traditional machine learning algorithms on carefully designed hand-crafted features as well as recent deep-learning methods. Lastly, we present the gap between current state-of-the-art technology and desirable clinical features and conclude with future directions of endoscopic AI technology development that will bridge the current gap.Low complexity of a system model is essential for its use in real-time applications. However, sparse identification methods commonly have stringent requirements that exclude them from being applied in an industrial setting. In this article, we introduce a flexible method for the sparse identification of dynamical systems described by ordinary differential equations. Our method relieves many of the requirements imposed by other methods that relate to the structure of the model and the dataset, such as fixed sampling rates, full state measurements, and linearity of the model. The Levenberg-Marquardt algorithm is used to solve the identification problem. We show that the Levenberg-Marquardt algorithm can be written in a form that enables parallel computing, which greatly diminishes the time required to solve the identification problem. An efficient backward elimination strategy is presented to construct a lean system model.Neural architecture search (NAS) depends heavily on an efficient and accurate performance estimator. To speed up the evaluation process, recent advances, like differentiable architecture search (DARTS) and One-Shot approaches, instead of training every model from scratch, train a weight-sharing super-network to reuse parameters among different candidates, in which all child models can be efficiently evaluated. Though these methods significantly boost search efficiency, they inherently suffer from inaccurate and unstable performance estimation. To this end, we propose a general and effective framework for powering weight-sharing NAS, namely, PWSNAS, by shrinking search space automatically, i.e., candidate operators will be discarded if they are less important. With the strategy, our approach can provide a promising search space of a smaller size by progressively simplifying the original search space, which can reduce difficulties for existing NAS methods to find superior architectures. https://www.selleckchem.com/products/bi-3231.html In particular, we present two strategies to guide the shrinking process detect redundant operators with a new angle-based metric and decrease the degree of weight sharing of a super-network by increasing parameters, which differentiates PWSNAS from existing shrinking methods. Comprehensive analysis experiments on NASBench-201 verify the superiority of our proposed metric over existing accuracy-based and magnitude-based metrics. PWSNAS can easily apply to the state-of-the-art NAS methods, e.g., single path one-shot neural architecture search (SPOS), FairNAS, ProxylessNAS, DARTS, and progressive DARTS (PDARTS). We evaluate PWSNAS and demonstrate consistent performance gains over baseline methods.Recent state-of-the-art active learning methods have mostly leveraged generative adversarial networks (GANs) for sample acquisition; however, GAN is usually known to suffer from instability and sensitivity to hyperparameters. In contrast to these methods, in this article, we propose a novel active learning framework that we call Maximum Classifier Discrepancy for Active Learning (MCDAL) that takes the prediction discrepancies between multiple classifiers. In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them. Intuitively, the discrepancies in the auxiliary classification layers' predictions indicate the uncertainty in the prediction. In this regard, we propose a novel method to leverage the classifier discrepancies for the acquisition function for active learning. We also provide an interpretation of our idea in relation to existing GAN-based active learning methods and domain adaptation frameworks. Moreover, we empirically demonstrate the utility of our approach where the performance of our approach exceeds the state-of-the-art methods on several image classification and semantic segmentation datasets in active learning setups.Classical federated learning approaches incur significant performance degradation in the presence of non-independent and identically distributed (non-IID) client data. A possible direction to address this issue is forming clusters of clients with roughly IID data. Most solutions following this direction are iterative and relatively slow, also prone to convergence issues in discovering underlying cluster formations. We introduce federated learning with taskonomy (FLT) that generalizes this direction by learning the task relatedness between clients for more efficient federated aggregation of heterogeneous data. In a one-off process, the server provides the clients with a pretrained (and fine-tunable) encoder to compress their data into a latent representation and transmit the signature of their data back to the server. The server then learns the task relatedness among clients via manifold learning and performs a generalization of federated averaging. FLT can flexibly handle a generic client relatedness graph, when there are no explicit clusters of clients, as well as efficiently decompose it into (disjoint) clusters for clustered federated learning. We demonstrate that FLT not only outperforms the existing state-of-the-art baselines in non-IID scenarios but also offers improved fairness across clients. Our codebase can be found at https//github.com/hjraad/FLT/.A new concept of human-machine interface to control hand prostheses based on displacements of multiple magnets implanted in the limb residual muscles, the myokinetic control interface, has been recently proposed. In previous works, magnets localization has been achieved following an optimization procedure to find an approximate solution to an analytical model. To simplify and speed up the localization problem, here we employ machine learning models, namely linear and radial basis functions artificial neural networks, which can translate measured magnetic information to desired commands for active prosthetic devices. They were developed offline and then implemented on field-programmable gate arrays using customized floating-point operators. We optimized computational precision, execution time, hardware, and energy consumption, as they are essential features in the context of wearable devices. When used to track a single magnet in a mockup of the human forearm, the proposed data-driven strategy achieved a tracking accuracy of 720 μm 95% of the time and latency of 12.07 μs. The proposed system architecture is expected to be more power-efficient compared to previous solutions. The outcomes of this work encourage further research on improving the devised methods to deal with multiple magnets simultaneously.Metagenome sequencing provides an unprecedented opportunity for the discovery of unknown microbes and viruses. A large number of phages and prokaryotes are mixed together in metagenomes. To study the influence of phages on human bodies and environments, it is of great significance to isolate phages from metagenomes. However, it is difficult to identify novel phages because of the diversity of their sequences and the frequent presence of short contigs in metagenomes. Here, virSearcher is developed to identify phages from metagenomes by combining the convolutional neural network (CNN) and the gene information of input sequences. Firstly, an input sequence is encoded in accordance with the different functions of its coding and the non-coding regions and then is converted into word embedding code through a word embedding layer before a convolutional layer. Meanwhile, the hit ratio of the virus genes is combined with the output of the CNN to further improve the performance of the network. The genes used by virSearcher consist of complete and incomplete genes. Experiments on several metagenomes have showed that, compared with others, virSearcher can significantly improve the performance for the identification of short sequences, while maintaining the performance for long ones. The source code of virSearcher is freely available from http//github.com/DrJackson18/virSearcher.Vast majority of current algorithms identify cell types by directly clustering transcriptional profiles, which ignore indirected relations among cells, resulting in an undesirable performance on cell type discovery and trajectory inference. In this study, we propose a network-based structural learning nonnegative matrix factorization algorithm (aka SLNMF) for the identification of cell types in scRNA-seq, which is transformed into a constrained optimization problem. SLNMF first constructs the similarity network for cells, and then extracts latent features of cell by exploiting the topological structure of cell-cell network. To improve the clustering performance, structural constraint is imposed on the model to learn the latent features of cells by preserving the structural information of the networks, thereby significantly improving performance of algorithms. Finally, we track the trajectory of cells by exploring the relation among cell types. Fourteen scRNA-seq datasets are adopted to validate the performance of algorithms with the number of single cells varying from 49 to 26,484. The experimental results demonstrate that SLNMF significantly outperforms thirteen state-of-the-art methods with an average 16.81% improvement in terms of accuracy, and it accurately identifies the trajectories of cells. The proposed model and methods provide an effective strategy to analyze scRNA-seq data.Biomedical factoid question answering is an essential application for biomedical information sharing. Recently, neural network based approaches have shown remarkable performance for this task. However, due to the scarcity of annotated data which requires intensive knowledge of expertise, training a robust model on limited-scale biomedical datasets remains a challenge. Previous works solve this problem by introducing useful knowledge. It is found that the interaction between question and answer (QA-interaction) is also a kind of knowledge which could help extract answer accurately. This research develops a knowledge distillation framework for biomedical factoid question answering, in which a teacher model as the knowledge source of QA-interaction is designed to enhance the student model. In addition, to further alleviate the problem of limited-scale dataset, a novel adversarial knowledge distillation technique is proposed to robustly distill the knowledge from teacher model to student model by constructing perturbed examples as additional training data.
Homepage: https://www.selleckchem.com/products/bi-3231.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.