Notes
Notes - notes.io |
Additionally, incubation of recombinant α2AP with MMP‑3 caused α2AP degradation. The mixture of recombinant α2AP with MMP‑3 was subsequently added to normal fibroblasts prior to western blotting. The results revealed decreased α‑smooth muscle actin (α‑SMA; a marker of the myofibroblast phenotype) and type I collagen expression. The stimulation of SSc fibroblasts with MMP‑3 decreased protein levels of α2AP, α‑SMA and type I collagen, thus reversing the pro‑fibrotic phenotype of SSc fibroblasts. SSc fibroblast transfection with microRNA‑29a resulted in a decreased TIMP‑1 expression, but also decreased the protein expression of α2AP. The results indicated that MMP‑3 attenuated fibrosis progression by degrading α2AP and ECM, and might therefore contribute to a novel therapeutic approach for SSc treatment.Atherosclerosis is a disease during which the inside of an artery narrows due to the accumulation of plaque, and vascular smooth muscle cells (VSMCs) are involved in the progression of atherosclerosis. Circular RNAs (circRNAs) have been reported to be involved in the progression of atherosclerosis. However, the role of circ_0010283 in atherosclerosis progression remains unclear. The present study aimed to investigate the functions and the mechanism of circ_0010283 in oxidized low‑density lipoprotein (ox‑LDL)‑induced VSMCs and to identify new potential biomarkers for the treatment of atherosclerosis. Cell viability and migration were examined by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide and Transwell assays. The relationship between microRNA (miR)‑370‑3p and circ_0010283 or high mobility group box 1 (HMGB1) was predicated by online software and confirmed by dual‑luciferase reporter assay and RNA immunoprecipitation assay. The results of the present study demonstrated that the expression leve0‑3p/HMGB1 axis in ox‑LDL‑induced VSMCs.Neovascularization in the retina can cause loss of vision. Vascular endothelial growth factor (VEGF) serves an important role in the pathogenesis of retinal vascular diseases. Hypoxia is a notable cause of VEGF release and both STAT3 and ERBB2 are known to be associated with VEGF. In addition, STAT3 and ERBB2 interact with each other. In the present study, it was hypothesized that signal transducer and activator of transcription 3 (STAT3) and erbB‑2 receptor tyrosine kinase 2 (ERBB2) may be involved in the regulation of hypoxia‑induced VEGF in the retina. Cells of the retinal pigment epithelium (RPE) are an important source of VEGF. Therefore, the RPE‑derived human cell line ARPE‑19 was exposed to hypoxia. Hypoxia‑induced phosphorylation of STAT3 and ERBB2 in ARPE‑19 cells was decreased by AG490, an inhibitor of Janus kinase 2, as were hypoxia‑induced VEGF release and tube formation in human umbilical vein endothelial cells. Thus, phosphorylation of ERBB2 and STAT3 regulates hypoxia‑induced VEGF release in ARPE‑19 cells. #link# The results of the present study suggested that inhibition of ERBB2 and STAT3‑mediated pathways under hypoxia may represent a new strategy for treating retinal vascular disease.Multidrug resistance of non‑small cell lung cancer (NSCLC) is a common clinical problem, which is one of the main reasons leading to the failure of chemotherapy. Therefore, how to overcome or prevent drug resistance has become a hot and difficult issue in clinical research. The present study was designed to investigate the expression patterns, functions and underlying mechanisms of MUC1 in regulating paclitaxel‑resistant cell line A549/PR in NSCLC. RT‑qPCR and western blot was performed to determine the mRNA and protein level, respectively. CCK‑8 was conducted to determine the cell viability of A549/PR cells. Moreover, flow cytometry assay was applied to examine the apoptosis rate of A549/PR. Herein, the MUC1 was over‑expressed in clinic NSCLC tissues and A549/PR cells. Silence of MUC1 could obviously suppress the proliferation and promote apoptosis of A549/PR cells in treatment of paclitaxel through up‑regulating the expression of Bax and Caspase‑3, and down‑regulating the expression of Bcl‑2, suggesting that chemotherapy combined with the modulation of MUC1 might be characterized as a promising therapeutic approach to overcome paclitaxel‑resistance in NSCLC in the future.Long non‑coding RNAs (lncRNAs) serve a pivotal role in hepatocellular carcinoma (HCC) progression and have been confirmed to participate in the carcinogenesis and development of HCC. Certain studies have focused on lncRNA nuclear enriched abundant transcript 1 (NEAT1) in HCC. However, the relationship between lncRNA NEAT1 and HCC remains unclear. The present study found that NEAT1 was significantly overexpressed in HCC cell lines compared with LX‑2 hepatic stellate cells. NEAT1 expression in Huh7 and MHCC‑97H cells was increased following transfection with lentivirus (LV)‑NEAT1 but inhibited by LV‑short hairpin NEAT1. Knockdown of NEAT1 significantly repressed HCC cell viability, increased cell apoptosis, and inhibited cell migration and invasion capacity. By contrast, upregulation of NEAT1 demonstrated the reverse effects. Furthermore, microRNA‑320a (miR‑230a) was predicted to be a direct target of NEAT1 and was significantly reduced in HCC cells. link2 Additionally, a luciferase activity reporter assay and RNA immunoprecipitation assay were performed to confirm the interaction between miR‑320a and NEAT1. link3 Using a dual‑luciferase activity assay, L antigen family member 3 (LAGE3) was found to be a target of miR‑320a. Finally, in vivo nude mouse models were established, and the results indicated that NEAT1 suppressed HCC progression by targeting miR‑320a. In conclusion, the present findings revealed that the NEAT1/miR‑320a/LAGE3 axis participates in HCC development and that NEAT1 could be used as a biomarker for HCC.The mTOR pathway serves an important role in the development of insulin resistance induced by obesity. Exercise improves obesity‑associated insulin resistance and hepatic energy metabolism; however, the precise mechanism of this process remains unknown. Therefore, the present study investigated the role of rapamycin, an inhibitor of mTOR, on exercise‑induced expression of hepatic energy metabolism genes in rats fed a high‑fat diet (HFD). A total of 30 male rats were divided into the following groups Normal group (n=6) fed chow diets and HFD group (n=24) fed an HFD for 6 weeks. The HFD rats performed exercise adaptation for 1 week and were randomly divided into the four following groups (each containing six rats) i) Group of HFD rats with sedentary (H group); ii) group of HFD rats with exercise (HE group); iii) group of HFD rats with rapamycin (HR group); and iv) group of HFD rats with exercise and rapamycin (HER group). Both HE and HER rats were placed on incremental treadmill training for 4 weeks (from week energy metabolism enzymes in the liver of HFD rats. Collectively, the results indicated that exercise reduced TG content and upregulated mitochondrial metabolic gene expression in the liver of HFD rats. Moreover, this mechanism may not involve the mTOR pathway.Oxidative stress induces the formation of oxidized low‑density lipoprotein (ox‑LDL), which accelerates the development of atherosclerosis and the rupture of atherosclerotic plaques by promoting lipid accumulation and inhibiting autophagy in vascular cells. Lipophagy is known to be involved in maintaining the balance of neutral lipid metabolism; however, the phenomenon of lipophagy deficiency in ox‑LDL‑treated endothelial cells (ECs) remains to be elucidated. It has been demonstrated that lipid accumulation caused by ox‑LDL inhibits autophagy, which promotes apoptosis in ECs. The aim of the present study was to investigate the association between decreased autophagy and lipid accumulation in ECs treated with ox‑LDL. Electron microscopy demonstrated that the formation of autolipophagosomes was decreased in ox‑LDL‑treated human umbilical vein ECs compared with that in the LDL‑treated group and was accompanied by a decrease in the autophagy‑associated proteins via western blotting analysis. Using laser focal colocalization detection, decreased lipid processing was observed in the lysosomes of ox‑LDL‑treated ECs, which indicated that lipophagy may be attenuated and subsequently result in lipid accumulation in ox‑LDL‑treated ECs.Resveratrol (RSV) has been reported to exhibit cytotoxic activity in multiple types of malignant cells; however, the mechanisms underlying the antitumor effects of RSV in non‑small‑cell lung cancer (NSCLC) cells remain undetermined. Combining bioinformatics analysis with experimental validation, the present study aimed to examine the effects of RSV on the apoptosis and autophagy of A549 NSCLC cells, and to determine the potential underlying molecular mechanisms. Bioinformatics analysis was used to determine the differentially expressed genes (DEGs) and identify the enriched biological functions and pathways associated with these DEGs following RSV treatment. Cell viability was determined by MTT assay, and flow cytometry and TUNEL assay were used to evaluate cell apoptosis. Monodansylcadaverine staining combined with a transmission electron microscope were used to evaluate the extent of autophagy. The expression levels of apoptosis‑, autophagy‑, or pathway‑associated molecular markers were measured by reverse y reversed the RSV‑induced cytotoxic effects, but did not significantly alter the number of apoptotic cells. RSV elevated the p53 levels and decreased the phosphorylated (p‑)Mdm2 and p‑Akt levels. Pifithrin‑α, an inhibitor of p53, partially reduced RSV‑induced apoptosis and autophagy. On the whole, the results of the present study demonstrated that RSV initiates the apoptosis and autophagic death of A549 cells via the activation of the p53 signaling pathway, further highlighting the potential of RSV for the treatment of NSCLC.The aim of the present study was to investigate the protective effect and underlying mechanism of tetramethylpyrazine (TMP) on renal ischemia reperfusion injury (RIRI) in rats, which refers to the injury caused by the restoration of blood supply and reperfusion of the kidney after a period of ischemia. Sprague‑Dawley rats were randomly divided into a Sham group, renal ischemia‑reperfusion (I/R) group and TMP group. TMP hydrochloride (40 mg/kg, 6 h intervals) was given via intraperitoneal injection immediately after reperfusion in the TMP group, after 24 h the kidney tissues were taken for follow‑up experiments. Pathological changes in the kidney tissues were observed by periodic acid‑Schiff staining. Renal function was assessed by measuring levels of serum creatinine and blood urea nitrogen, and inflammatory cytokines tumor necrosis factor (TNF)‑α and interleukin (IL)‑6. Renal cell apoptosis was detected by TUNEL‑DAPI double staining, mRNA and protein changes were analyzed by reverse transcription‑quantitativated to the reduction of NLRP3 expression in renal tissues.MicroRNA (miRNA/miR)‑92a has been identified as being significantly downregulated in non‑small cell lung cancer (NSCLC) tissues using a miRNA array. However, its biological function and molecular mechanisms in NSCLC have not been fully elucidated. The aim of the present study was to determine the role of miR‑92a in NSCLC and the mechanisms by which it affects NSCLC cells. The expression levels of miR‑92a in NSCLC tissues and cell lines were analyzed using reverse transcription‑quantitative PCR. Cell viability and cell apoptosis were determined using an MTT assay and flow cytometry, respectively. selleck compound was observed that miR‑92a was significantly upregulated in NSCLC tissues and cell lines. Inhibition of miR‑92a significantly suppressed viability of NSCLC cells, with concomitant downregulation of key proliferative genes, such as proliferating cell nuclear antigen and Ki‑67. miR‑92a downregulation induced apoptosis of NSCLC cells, as evidenced by flow cytometry and apoptosis‑related protein detection. Luciferase assays confirmed that miR‑92a could directly bind to the 3'‑untranslated region of tumor suppressor F‑box/WD repeat‑containing protein 7 (FBXW7) and suppress its translation.
My Website: https://www.selleckchem.com/products/ml141.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team