Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.Researchers have hypothesized that in order to accommodate variability in how talkers produce their speech sounds, listeners must perform a process of talker normalization. Consistent with this proposal, several studies have shown that spoken word recognition is slowed when speech is produced by multiple talkers compared with when all speech is produced by one talker (a multitalker processing cost). Nusbaum and colleagues have argued that talker normalization is modulated by attention (e.g., Nusbaum & Morin, 1992, Speech Perception, Production and Linguistic Structure, pp. 113-134). Some of the strongest evidence for this claim is from a speeded monitoring study where a group of participants who expected to hear two talkers showed a multitalker processing cost, but a separate group who expected one talker did not (Magnuson & Nusbaum, 2007, Journal of Experimental Psychology, 33[2], 391-409). In that study, however, the sample size was small and the crucial interaction was not significant. In this registered report, we present the results of a well-powered attempt to replicate those findings. In contrast to the previous study, we did not observe multitalker processing costs in either of our groups. To rule out the possibility that the null result was due to task constraints, we conducted a second experiment using a speeded classification task. As in Experiment 1, we found no influence of expectations on talker normalization, with no multitalker processing cost observed in either group. Our data suggest that the previous findings of Magnuson and Nusbaum (2007) be regarded with skepticism and that talker normalization may not be permeable to high-level expectations.The congruency sequence effect (CSE) describes the performance difference of congruent trials (in which target and distractor stimuli are associated with the same response) compared to incongruent trials (in which target and distractor stimuli are associated with different responses) as a function of the preceding congruency level (congruent trials relative to incongruent trials). The CSE is commonly interpreted as a measure of conflict-induced attentional adjustment. Although previous research has made substantial progress aiming at controlling for alternative explanations of the CSE, both task-specific and fundamental confounds have remained. In the current study, we used a temporal flanker task, in which two stimuli (i.e., distractor and target) are presented in rapid succession, and extended previous demonstrations of a CSE in flanker tasks by deconfounding target-distractor congruency from perceptual similarity. Using a four-choice task, we could also control for the reversal of distractor-response priming after incongruent trials (which is only feasible in two-choice tasks). Furthermore, we controlled for all confounds based on the sequence (i.e., repetition versus alternation) of the congruency level - such as feature sequence effects, distractor-response contingency switch costs, or temporal learning - by probing the allocation of attention to the points in time of presentation of the first and the second stimulus of a trial. This was achieved by intermixing trials of a temporal search task. The performance accuracy results in this task were consistent with a stronger attentional bias in favor of the target stimulus' temporal position after incongruent than after congruent trials.Effects of statistical learning (SL) of distractor location have been shown to persist when the probabilities of distractor occurrence are equalized across different locations in a so-called extinction phase. Here, we asked whether lingering effects of SL are still observed when a true extinction phase, during which the distractor is completely omitted, is implemented. The results showed that, once established, the effects of SL of distractor location do survive the true extinction phase, indicating that the pattern of suppression in the saliency map is encoded in a form of long-lasting memory. Quite unexpectedly, we also found that the amount of filtering implemented at a given location is not only dictated by the specific rate of distractor occurrence at that location, as previously found, but also by the global distractor probability. We therefore suggest that the visual attention system could be more or less (implicitly) prone to suppression as a function of how often the distractor is encountered overall, and that this suppressive bias affects the degree of suppression at the specific distractor-probability location. L-glutamate cell line Finally, our results showed that the effects of SL of distractor location can appear much more rapidly than has been previously documented, requiring a few trials to become manifest. Hence, SL of distractor location appears to have an asymmetrical rate of learning during acquisition and extinction, while the amount of suppression exerted at a specific distractor location is modulated by distractor contextual probabilistic information.
Here's my website: https://www.selleckchem.com/products/l-arginine-l-glutamate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team