Notes
Notes - notes.io |
Specifically, the separation was attributed to 14 taxa belonging to the genera Megaspheara, unclassified enterobacteria, Prevotella, Porphyromonas, Rothia and Salmonella, Streptococcus, and Fusobacterium. The most discriminative bacterial genera between leukoplakia and oral cancer were Megasphaera, unclassified Enterobacteriae, Salmonella and Prevotella.Conclusion Oral bacteria may play a role in the early stages of oral carcinogenesis as a dysbiotic bacteriome is associated with oral leukoplakia and this resembles that of oral cancer more than healthy controls. Our findings may have implications for developing oral cancer prevention strategies targeting early microbial drivers of oral carcinogenesis.Oral innate immunity is led by neutrophils. It is still unclear how their main antimicrobial mechanisms against different biofilms may contribute to balance or dysregulation in the oral cavity. We investigated the capacity of commensal (Streptococcus oralis) and pathogenic (Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans) monospecies biofilms to induce or to inhibit selected antimicrobial mechanisms of neutrophils. S. oralis induced neutrophil extracellular traps (NETs) formation, reactive oxygen species (ROS) production, and matrix metalloproteinases (MMPs) 8 and 9 secretion. However, these responses were partially reduced in PMA-activated neutrophils indicating a balance-like neutrophil response, which might be important for the maintenance of oral health. P. gingivalis generally induced ROS. Reduced NET formation and significantly decreased MMP secretion were detectable in activated neutrophils highlighting P. gingivalis' nucleolytic and proteolytic activity, which might support bacterial colonization and pathogenesis of periodontitis. In contrast, A. actinomycetemcomitans did not affect the levels of antimicrobial factors in activated neutrophils and induced NET formation, ROS production, and secretion of MMP-8 and -9 in neutrophils alone, which might contribute to tissue destruction and disease progression. In summary, neutrophil responses to biofilms were species-specific and might support either maintenance of oral health or pathogenesis of periodontitis depending on the species.Objective Refractory infection is an important factor affecting the progression of medication-related osteonecrosis of the jaw (MRONJ) from clinical stage I to stage II/III. The aim of this study was to explore the distribution of bacteria and their association with the inflammatory pathway of stage II/III MRONJ. Materials and Methods Nine specimens of fresh inflammation tissue, located next to the necrotic bone or sequestrum, were collected from MRONJ patients. Nine specimens from normal oral mucosa were collected from healthy patients. The 16S rRNA gene sequencing method was used to determine the distribution characteristics of the bacterial colony. The protein microarray analysis was used to detect the expression of inflammatory cytokines. Pralsetinib mouse Results The average relative abundance of Bacteroidetes, Spirochaetes, Synergistetes, and Tenericutes was higher, while Proteobacteria and Actinobacteria were lower in the MRONJ group. Most pro-inflammatory cytokines were up-regulated in the MRONJ group; yet, only IFNγ, TNFα, and IL8 showed statistical differences (P less then 0.05). Porphyromonas and Treponema were positively correlated with IL8, and Mogibacterium was positively correlated with IFNγ and TNFα. Conclusions IL8/IFNγ/TNFα pro-inflammatory effect caused by Porphyromonas, Treponema, and Mogibacterium may be the leading cause of advancing MRONJ and thus may be used as a new target for infection control.Background Evidence suggest periodontal bacterial infection can contribute to oral cancer initiation and progression. link2 Aim To investigate the effects of periodontal bacteria on oral cancer cell behavior using a cell-based system and a mouse carcinogenesis model. Methods Oral cancer cell lines were polyinfected with four periodontal bacteria. Cytokine levels and relative changes in oncogene mRNA expression were determined post-infection. Oral tumours in mice induced by 4-nitroquinoline-1-oxide (4NQO) were compared with and without administrating periodontal bacteria. Results Polyinfected oral cancer cells had upregulated MMP1, MMP9, and IL-8. The expression of cell survival markers MYC, JAK1, and STAT3 and epithelial-mesenchymal transition markers ZEB1 and TGF-β were also significantly elevated. Monoinfections showed F. nucleatum alone had comparable or greater effects than the four bacteria together. Fusobacterial culture supernatant, primarily LPS, was sufficient to induce IL-8 secretion, demonstrating that direct contact of live Fusobacteria with cancer cells might not be required to exert changes in cancer cell behaviour. In the 4NQO-induced oral tumour model, mice infected with bacteria developed significantly larger and more numerous lesions compared to those not infected. Conclusion This study demonstrated that Fusobacteria could potentially enhance cancer cell invasiveness, survival, and EMT when presented in the oral tumour microenvironment. Abbreviations 4NQO, 4-nitroquinoline-1-oxide; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial-mesenchymal transition; IL-8, interleukin-8; JAK1, Janus kinase 1; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; OSCCs, oral squamous cell carcinomas; PK, proteinase K; PMB, Polymyxin B; qRT-PCR, quantitative real-time polymerase chain reaction; STAT3, signal transducer and activator of transcription 3; TGF-β, transforming growth factor beta; ZEB1, zinc finger E-Box binding homeobox 1.Background The ability of coronavirus SARS-CoV-2 to spread is one of the determinants of the COVID-19 pandemic status. link3 Until June 2020, global COVID-19 cases surpassed 10 million. Asymptomatic patients, with no respiratory impairment, are believed to be responsible for more than 80% of the transmission. Other viruses have been consistently detected in periodontal tissues. Objective The aim of this study was to investigate the presence of SARS-CoV-2 in periodontal tissue. Methods We conducted video-endoscope minimally invasive post-mortem biopsy in seven fatal cases of COVID-19, using a regular endoscope video system associated with a smartphone to locate periodontal tissue. We analyzed the samples using RT-PCR, to identify the SARS-CoV-2 RNA and histopathological analysis. Results The seven studied autopsies with positive laboratory tests for COVID-19 included 57.14% of female patients at the average age of 47.4 (range 8 to 74). In five cases, periodontal tissue was positive for SARS-CoV-2 (RT-PCR). Histopathologic analyses showed morphologic alterations in the keratinocytes of the junctional epithelium, a vacuolization of the cytoplasm and nucleus and nuclear pleomorphism. Conclusion We presented a biomolecular analysis obtained from minimally invasive autopsies. This is the first study to demonstrate the presence of SARS-CoV-2 in periodontal tissue in COVID-19 positive patients.Introduction Antibiotic resistance is widely found even among bacterial populations not having been exposed to selective pressure by antibiotics, such as tetracycline. In this study we analyzed the tetracycline-resistant subgingival microbiota of healthy subjects and of patients with periodontitis, comparing the prevalence of tet genes and their multidrug resistance profiles. Methods Samples from 259 volunteers were analyzed, obtaining 813 tetracycline-resistant isolates. The prevalence of 12 antibiotic resistance genes was assessed, and multidrug profiles were built. Each isolate was identified by 16S rRNA sequencing. Differences in qualitative data and quantitative data were evaluated using the chi-square test and the Mann-Whitney-U test, respectively. Results tet(M) was the most frequently detected tet gene (52.03%). We observed significant differences between the prevalence of tet(M), tet(W), tet(O), tet(32) and tet(L) in both populations studied. Multidrug resistance was largely observed, with resistance to kanamycin being the most detected (83.64%). There were significant differences between the populations in the prevalence of kanamycin, chloramphenicol, and cefotaxime resistance. Resistant isolates showed significantly different prevalence between the two studied groups. Conclusion The high prevalence of multidrug resistance and tetracycline resistance genes found in the subgingival microbiota, highlights the importance of performing wider and more in-depth analysis of antibiotic resistance in the oral microbiota.Interferon (IFN) responses are central to host defense against coronavirus and other virus infections. Manganese (Mn) is capable of inducing IFN production, but its applications are limited by nonspecific distributions and neurotoxicity. Here, we exploit chemical engineering strategy to fabricate a nanodepot of manganese (nanoMn) based on Mn2+. Compared with free Mn2+, nanoMn enhances cellular uptake and persistent release of Mn2+ in a pH-sensitive manner, thus strengthening IFN response and eliciting broad-spectrum antiviral effects in vitro and in vivo. Preferentially phagocytosed by macrophages, nanoMn promotes M1 macrophage polarization and recruits monocytes into inflammatory foci, eventually augmenting antiviral immunity and ameliorating coronavirus-induced tissue damage. Besides, nanoMn can also potentiate the development of virus-specific memory T cells and host adaptive immunity through facilitating antigen presentation, suggesting its potential as a vaccine adjuvant. Pharmacokinetic and safety evaluations uncover that nanoMn treatment hardly induces neuroinflammation through limiting neuronal accumulation of manganese. Therefore, nanoMn offers a simple, safe, and robust nanoparticle-based strategy against coronavirus.
Supplementary material is available for this article at 10.1007/s12274-020-3243-5 and is accessible for authorized users.
Supplementary material is available for this article at 10.1007/s12274-020-3243-5 and is accessible for authorized users.This literature-based article found that on 08 June 2020, New Zealand claimed victory over coronavirus disease 2019 (COVID-19) mainly because of effective non-pharmaceutical strategies and interventions that included a hard lockdown. The response was informed by the country's Influenza Pandemic Plan (although without criticism), which was updated in 2017, and the swift responses from political leadership and other key stakeholders. Strategies instituted included the proclamation of urgent precautionary measures leading to border closures, issuing of a 3-month-long COVID-19 notice under the Epidemic Preparedness Act 2006, the proclamation of the COVID-19 Elimination Strategy and the Initial COVID-19 Māori Response Action Plan, which incorporated COVID-19 Alert Levels that facilitated stepwise easing of the hard lockdown. The non-pharmaceutical strategies seem to have worked again, even as the second wave of COVID-19 infections returned in August 2020 through an Auckland cluster. Hence, the New Zealand case remains one that the world can draw lessons from, although not perfect.Natural hazards disrupt the daily lives of people and communities. Consequently, social workers, like any other stakeholders, deal with community predicaments arising from the effects of natural hazards. The social relief distress (SRD) programme of government utilises needs-based, top-down government-driven interventions in communities affected by natural hazards, focused on what communities lack, as opposed to what communities have. This research study involved a community that experienced natural hazards, such as flooding, hail, lightning and windstorms, which destroyed property and livelihoods during the period 2014-2015. Eight experts and 12 affected community members participated in a qualitative participatory action research analysis study between 2016 and 2017. Guided by the asset-based community development (ABCD) approach, the affected community participated in a collaborative manner in the analysis of the consequences of natural hazards within the community. Data were collected through semi-structured individual interviews and focus group discussions, and analysed thematically.
Website: https://www.selleckchem.com/products/blu-667.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team