Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A significant positive correlation was noted on the correlation of GCF visfatin levels with clinical parameters.
Our study outcomes propose that
can be the bonafide periopathogen which modulate the visfatin levels in individuals with periodontal disease and GCF visfatin can also be evaluated as a biomarker in periodontal disease.
Our study outcomes propose that P. gingivalis can be the bonafide periopathogen which modulate the visfatin levels in individuals with periodontal disease and GCF visfatin can also be evaluated as a biomarker in periodontal disease.
Periodontitis has been implicated as a risk factor for rheumatoid arthritis (RA).
This study aimed to assess the relationship between RA and chronic periodontitis (CP) by evaluating the serum levels of the anti citrullinated protein antibody (ACPA) which is a marker of RA in systemically healthy individuals with and without CP.
This case-control study enrolled 40 systemically healthy individuals. Participants were divided into two groups, i.e., CP group Systemically healthy chronic periodontitis (CPSH) (
= 20) and control group Systemically healthy (SH) (
= 20), matched for age and gender. The CP patients were evaluated for periodontal parameters, namely probing pocket depth, clinical attachment loss, percentage of the site involved with attachment loss, and number of teeth present. A volume of 5 ml of venous blood was collected from both the groups and centrifuged; the separated serum was stored at - 70°C before being analyzed. Later, serum samples were tested for levels of ACPA in both the groups and compared.
The mean serum ACPA levels were higher in CPSH patients compared to SH (131.38 RU/ml vs. 34.54 RU/ml,
= 0.001), which was statistically highly significant. In addition, we found a significant elevation of serum ACPA levels in severe generalized CP patients compared to moderate generalized CP patients (175.47 RU/ml vs. 95.31 RU/ml,
= 0.001), and the difference was statistically highly significant.
The results of the study confirmed that CP can be a risk factor for RA. Moreover, the severity of periodontitis appeared to be related to elevated serum levels of ACPA.
The results of the study confirmed that CP can be a risk factor for RA. learn more Moreover, the severity of periodontitis appeared to be related to elevated serum levels of ACPA.There is a huge body of literature suggesting an association and a bidirectional relationship between periodontal disease and diabetes. Diabetes and periodontal diseases are both chronic diseases with a high prevalence. Dentists/periodontists, in their daily clinical practice, very often attend to diabetes patients with diverse oral health conditions and cater to their dental treatment needs. Safe and effective periodontal therapy in this population requires a broad understanding of diabetes, medical management of diabetes, and essential modifications to dental/periodontal therapy that may be required. This paper describes a joint statement put forth by the Indian Society of Periodontology and the Research Society for the Study of Diabetes in India aiming to provide expert consensus and evidence-based guidelines for optimal clinical management of periodontal conditions in diabetes patients or patients at risk for diabetes. Although this paper is not envisioned to be a comprehensive review of this topic, it intends to provide the guidelines for dental professionals and periodontists.Owing to rapid global climate change, the occurrence of multiple abiotic stresses is known to influence the outburst of biotic stress factors which affects crop productivity. Therefore, it is essential to understand the molecular and cell biology of key genes associated with multiple stress responses in crop plants. SlHyPRP1 and DEA1, the members of eight-cysteine motif (8CM) family genes have been recently identified as putative regulators of multiple stress responses in tomato (Solanum lycopersicum L.). In order to gain deeper insight into cell and molecular biology of SlHyPRP1 and DEA1, we performed their expression analysis in three tomato cultivars and in vivo cell biological analysis. The semi-quantitative PCR and qRT-PCR results showed the higher expression of SlHyPRP1 and DEA1 in leaf, stem, flower and root tissues as compared to fruit and seed tissues in all three cultivars. The expression levels of SlHyPRP1 and DEA1 were found to be relatively higher in a wilt susceptible tomato cultivar (Arka Vikas) than a multiple disease resistant cultivar (Arka Abhed). In vivo cell biological analysis through Gateway cloning and Bi-FC assay revealed the predominant sub-cellular localization and strong protein-protein interaction of SlHyPRP1 and DEA1 at the cytoplasm and plasma membrane. Moreover, SlHyPRP1 showed in vivo interaction with stress responsive proteins WRKY3 and MST1. Our findings suggest that SlHyPRP1 with DEA1 are co-expressed with tissue specificity and might function together by association with WRKY3 and MST1 in plasma membrane for regulating multiple stress responses in the tomato plant.Rhizosphere bacteria, whether phytopathogenic or phytobeneficial, are thought to be perceived by the plant as a threat. Plant Growth-Promoting Rhizobacteria (PGPR), such as many strains of the Azospirillum genus known as the main phytostimulator of cereals, cooperate with host plants and favorably affect their growth and health. An earlier study of rice root transcriptome, undertaken with two rice cultivars and two Azospirillum strains, revealed a strain-dependent response during the rice-Azospirillum association and showed that only a few genes, including some implicated in plant defense, were commonly regulated in all tested conditions. Here, a set of genes was selected from previous studies and their expression was monitored by qRT-PCR in rice roots inoculated with ten PGPR strains isolated from various plants and belonging to various genera (Azospirillum, Herbaspirillum, Paraburkholderia). A common expression pattern was highlighted for four genes that are proposed to be markers of the rice-PGPR interaction two genes involved in diterpenoid phytoalexin biosynthesis (OsDXS3 and OsDTC2) and one coding for an uncharacterized protein (Os02g0582900) were significantly induced by PGPR whereas one defense-related gene encoding a pathogenesis-related protein (PR1b, Os01g0382000) was significantly repressed. Interestingly, exposure to a rice bacterial pathogen also triggered the expression of OsDXS3 while the expression of Os02g0582900 and PR1b was down-regulated, suggesting that these genes might play a key role in rice-bacteria interactions. Integration of these results with previous data led us to propose that the jasmonic acid signaling pathway might be triggered in rice roots upon inoculation with PGPR.Tomato is a major cultivated vegetable species of great economic importance throughout the world, but its fruit yield is severely impaired by drought stress. PopW, a harpin protein from Ralstonia solanacearum ZJ3721, plays vital roles in various plant defence responses and growth. In this study, we observed that the foliar application of PopW increased tomato drought tolerance. Our results showed that compared with water-treated plants, PopW-treated plants presented a significantly higher recovery rate and leaf relative water content under drought-stress conditions. link2 PopW decreased the malondialdehyde content and relative electrical conductivity by 40.2% and 21%, respectively. Drought disrupts redox homeostasis through the excessive accumulation of reactive oxygen species (ROS). PopW-treated plants displayed an obvious reduction in ROS accumulation due to enhanced activities of the antioxidant enzyme catalase, superoxide dismutase and peroxidase. Moreover, PopW promoted early stomatal closure, thereby minimizing the water loss rate of plants under drought stress. Further investigation revealed that endogenous abscisic acid (ABA) levels and the transcript levels of drought-responsive genes involved in ABA signal transduction pathways increased in response to PopW. These results confirm that PopW increases drought tolerance through multiple mechanisms involving an enhanced water-retention capacity, balanced redox homeostasis, increased osmotic adjustment, reduced membrane damage and decreased stomatal aperture, suggesting that the application of exogenous PopW may be a potential method to enhance tomato drought tolerance.Auxins (Aux) are primary growth regulators that regulate almost every aspect of growth and development in plants. It plays a vital role in various plant processes besides controlling the key aspects of cell division, cell expansion, and cell differentiation. Considering the significance of Aux, and its potential applications, a study was conducted to observe the impact of indole acetic acid (IAA), a most active and abundant form of Aux on Brassica juncea plants growing under natural environmental conditions. Different concentrations (0, 10-10, 10-8, 10-6 M) of IAA were applied once in a day at 25-day stage of growth for 5 days, consecutively. Various parameters (growth, photosynthetic, biochemical, oxidative biomarkers and nutrient composition) were assessed at different days after sowing (DAS). Scanning electron microscopy (SEM) of leaf stomata, reactive oxygen species (ROS) localization in leaf and roots, and confocal microscopy were also conducted. The results revealed that all the IAA concentrations were effective in growth promotion and ROS reduction, however, the 10-8 M of IAA exhibited the maximum improvement in all the above mentioned parameters as compared to the control.The present study aims at the amelioration of chromium Cr(VI) toxicity using ethylenediaminetetraacetic acid (EDTA), and to understand the interactive effects of Cr(VI) and EDTA with respect to seedling growth, lipid peroxidation as assessed from malondialdehyde, pigments and antioxidative enzymes in Hordeum vulgare L. link3 Following multivariate statistical techniques were used to study binary interactions between Cr(VI) and EDTA 2-way ANOVA, Tukey's multiple comparison test, multiple regression with interaction between Cr an EDTA, beta coefficients, path analysis and non-metric multidimensional scaling (NMDS). The present study revealed that the EDTA decreases lipid peroxidation induced by Cr(VI) and ameliorates the antioxidative defence system and pigment constitution of seedlings grown in Cr(VI) containing media. EDTA-Cr(VI) interaction decreased the Cr content in the seedlings which may be attributed to the chelating effect of EDTA. The root and shoot bioconcentration factors, the ratio of Cr content in the plant to that in the medium, were decreased by addition of EDTA to Cr(VI), indicating a decrease in the uptake of Cr by the seedlings from the medium. NMDS revealed that the ranking of the studied parameters is maintained by ordination on two axes. The study established that EDTA is antagonistic to Cr(VI) induced biochemical toxicity, and improves the antioxidative defence system, increases the chlorophyll content, and decreases Cr uptake in barley seedlings.Rice grain yield is drastically reduced under low light especially in kharif (wet) season due to cloudy weather during most part of crop growth. Therefore, 50-60% of yield penalty was observed. To overcome this problem, identification of low light tolerant rice genotypes with a high buffering capacity trait such as photosynthetic rate has to be developed. Sedoheptulose-1,7 bisphosphatase, a light-regulated enzyme, plays pivotal role in the Calvin cycle by regenerating the substrate (RuBP) for RuBisCo and therefore, indirectly regulates the influx of CO2 for this crucial process. We found a potential role of SBPase expression and activity in low light tolerant and susceptible rice genotypes by analyzing its influence on net photosynthetic rate and biomass. We observed a significant relationship of yield with photosynthesis, SBPase expression and activity especially under low light conditions. Two tolerant and two susceptible rice genotypes were used for the present study. Tolerant genotypes exhibited significant but least reduction compared to susceptible genotypes in the expression and activity of SBPase, which was also manifested in its photosynthetic rate and finally in the grain yield under low light.
My Website: https://www.selleckchem.com/products/SB590885.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team