NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Persistent Kidney Illness upon Health-Related Quality of Life throughout Sufferers together with Diabetes Mellitus: A nationwide Agent Review.
Our extensive experimental results on benchmark datasets and ablation studies demonstrate that the proposed LTI-ST method outperforms existing index methods by a large margin while providing the above new capabilities which are highly desirable in practice.This article proposes a hybrid multi-dimensional features fusion structure of spatial and temporal segmentation model for automated thermography defects detection. In addition, the newly designed attention block encourages local interaction among the neighboring pixels to recalibrate the feature maps adaptively. A Sequence-PCA layer is embedded in the network to provide enhanced semantic information. The final model results in a lightweight structure with smaller number of parameters and yet yields uncompromising performance after model compression. The proposed model allows better capture of the semantic information to improve the detection rate in an end-to-end procedure. Compared with current state-of-the-art deep semantic segmentation algorithms, the proposed model presents more accurate and robust results. In addition, the proposed attention module has led to improved performance on two classification tasks compared with other prevalent attention blocks. In order to verify the effectiveness and robustness of the proposed model, experimental studies have been carried out for defects detection on four different datasets. The demo code of the proposed method can be linked soon http//faculty.uestc.edu.cn/gaobin/zh_CN/lwcg/153392/list/index.htm.High Efficiency Video Coding (HEVC) can significantly improve the compression efficiency in comparison with the preceding H.264/Advanced Video Coding (AVC) but at the cost of extremely high computational complexity. Hence, it is challenging to realize live video applications on low-delay and power-constrained devices, such as the smart mobile devices. In this article, we propose an online learning-based multi-stage complexity control method for live video coding. The proposed method consists of three stages multi-accuracy Coding Unit (CU) decision, multi-stage complexity allocation, and Coding Tree Unit (CTU) level complexity control. Consequently, the encoding complexity can be accurately controlled to correspond with the computing capability of the video-capable device by replacing the traditional brute-force search with the proposed algorithm, which properly determines the optimal CU size. Specifically, the multi-accuracy CU decision model is obtained by an online learning approach to accommodate the different characteristics of input videos. In addition, multi-stage complexity allocation is implemented to reasonably allocate the complexity budgets to each coding level. In order to achieve a good trade-off between complexity control and rate distortion (RD) performance, the CTU-level complexity control is proposed to select the optimal accuracy of the CU decision model. The experimental results show that the proposed algorithm can accurately control the coding complexity from 100% to 40%. Furthermore, the proposed algorithm outperforms the state-of-the-art algorithms in terms of both accuracy of complexity control and RD performance.Person re-identification (Re-ID) aims to match pedestrian images across various scenes in video surveillance. There are a few works using attribute information to boost Re-ID performance. Specifically, those methods leverage attribute information to boost Re-ID performance by introducing auxiliary tasks like verifying the image level attribute information of two pedestrian images or recognizing identity level attributes. Identity level attribute annotations cost less manpower and are well-fitted for person re-identification task compared with image-level attribute annotations. However, the identity attribute information may be very noisy due to incorrect attribute annotation or lack of discriminativeness to distinguish different persons, which is probably unhelpful for the Re-ID task. In this paper, we propose a novel Attribute Attentional Block (AAB), which can be integrated into any backbone network or framework. Our AAB adopts reinforcement learning to drop noisy attributes based on our designed reward and then utilizes aggregated attribute attention of the remaining attributes to facilitate the Re-ID task. Experimental results demonstrate that our proposed method achieves state-of-the-art results on three benchmark datasets.Mismatches between the precisions of representing the disparity, depth value and rendering position in 3D video systems cause redundancies in depth map representations. In this paper, we propose a highly efficient multiview depth coding scheme based on Depth Histogram Projection (DHP) and Allowable Depth Distortion (ADD) in view synthesis. Firstly, DHP exploits the sparse representation of depth maps generated from stereo matching to reduce the residual error from INTER and INTRA predictions in depth coding. We provide a mathematical foundation for DHP-based lossless depth coding by theoretically analyzing its rate-distortion cost. Then, due to the mismatch between depth value and rendering position, there is a many-to-one mapping relationship between them in view synthesis, which induces the ADD model. Based on this ADD model and DHP, depth coding with lossless view synthesis quality is proposed to further improve the compression performance of depth coding while maintaining the same synthesized video quality. Experimental results reveal that the proposed DHP based depth coding can achieve an average bit rate saving of 20.66% to 19.52% for lossless coding on Multiview High Efficiency Video Coding (MV-HEVC) with different groups of pictures. In addition, our depth coding based on DHP and ADD achieves an average depth bit rate reduction of 46.69%, 34.12% and 28.68% for lossless view synthesis quality when the rendering precision varies from integer, half to quarter pixels, respectively. #link# We obtain similar gains for lossless depth coding on the 3D-HEVC, HEVC Intra coding and JPEG2000 platforms.Detection and analysis of informative keypoints is a fundamental problem in image analysis and computer vision. Keypoint detectors are omnipresent in visual automation tasks, and recent years have witnessed a significant surge in the number of such techniques. Evaluating the quality of keypoint detectors remains a challenging task owing to the inherent ambiguity over what constitutes a good keypoint. In this context, we introduce a reference based keypoint quality index which is based on the theory of spatial pattern analysis. Unlike traditional correspondence-based quality evaluation which counts the number of feature matches within a specified neighborhood, we present a rigorous mathematical framework to compute the statistical correspondence of the detections inside a set of salient zones (cluster cores) defined by the spatial distribution of a reference set of keypoints. We leverage the versatility of the level sets to handle hypersurfaces of arbitrary geometry, and develop a mathematical framework to estimate the model parameters analytically to reflect the robustness of a feature detection algorithm. Extensive experimental studies involving several keypoint detectors tested under different imaging scenarios demonstrate efficacy of our method to evaluate keypoint quality for generic applications in computer vision and image analysis.The paper proposes a solution to effectively handle salient regions for style transfer between unpaired datasets. Recently, Generative Adversarial Networks (GAN) have demonstrated their potentials of translating images from source domain X to target domain Y in the absence of paired examples. However, such a translation cannot guarantee to generate high perceptual quality results. Existing style transfer methods work well with relatively uniform content, they often fail to capture geometric or structural patterns that always belong to salient regions. Detail losses in structured regions and undesired artifacts in smooth regions are unavoidable even if each individual region is correctly transferred into the target style. In this paper, we propose SDP-GAN, a GAN-based network for solving such problems while generating enjoyable style transfer results. We introduce a saliency network, which is trained with the generator simultaneously. The saliency network has two functions (1) providing constraints for content loss to increase punishment for salient regions, and (2) supplying saliency features to generator to produce coherent results. Moreover, two novel losses are proposed to optimize the generator and saliency networks. The proposed method preserves the details on important salient regions and improves the total image perceptual quality. Qualitative and quantitative comparisons against several leading prior methods demonstrates the superiority of our method.The use of lp (p = 1,2) norms has largely dominated the measurement of loss in neural networks due to their simplicity and analytical properties. However, when used to assess the loss of visual information, these simple norms are not very consistent with human perception. Here, we describe a different "proximal" approach to optimize image analysis networks against quantitative perceptual models. Specifically, we construct a proxy network, broadly termed ProxIQA, which mimics the perceptual model while serving as a loss layer of the network. We experimentally demonstrate how this optimization framework can be applied to train an end-to-end optimized image compression network. By building on top of an existing deep image compression model, we are able to demonstrate a bitrate reduction of as much as 31% over MSE optimization, given a specified perceptual quality (VMAF) level.Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In Luminespib nmr , we propose a novel image deblurring method that does not need to estimate blur kernels. link2 We utilize a pair of images that can be easily acquired in low-light situations (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. link3 We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics.In this paper, we propose an adversarial multi-label variational hashing (AMVH) method to learn compact binary codes for efficient image retrieval. Unlike most existing deep hashing methods which only learn binary codes from specific real samples, our AMVH learns hash functions from both synthetic and real data which make our model effective for unseen data. Specifically, we design an end-to-end deep hashing framework which consists of a generator network and a discriminator-hashing network by enforcing simultaneous adversarial learning and discriminative binary codes learning to learn compact binary codes. The discriminator-hashing network learns binary codes by optimizing a multi-label discriminative criterion and minimizing the quantization loss between binary codes and real-value codes. The generator network is learned so that latent representations can be sampled in a probabilistic manner and used to generate new synthetic training sample for the discriminator-hashing network. Experimental results on several benchmark datasets show the efficacy of the proposed approach.
Read More: https://www.selleckchem.com/products/NVP-AUY922.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.