NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Unnatural Intelligence inside Endoscopy.
The CCF4-AM Förster resonance energy transfer (FRET) assay is a sensitive approach to measure bacterial cytosolic translocation in live cells. The FRET pair hydroxycoumarin (donor) and fluorescein (acceptor) are linked by a CCF4-AM β-lactam ring, the substrate of β-lactamase. The exogenously added, neutral charged-FRET reagent can diffuse across the membrane and stay in the cytosol only once it is charged in the cytosol. When bacteria translocate from subcellular organelles (e.g., phagosomes) to the cytosol, the bacteria-associated β-lactamase cleaves the β-lactam ring, resulting in loss of FRET signal. Here we describe the fluorometer-based approach optimized for direct measurement of cytosolic translocation as a result of the EsxAB complex of Mycobacterium marinum in RAW264.7 cells.Proteins involved in neurodegeneration can be coupled with optogenetic reagents to create rapid and sensitive reporters to provide insight into the biochemical processes that mediate the progression of neurodegenerative disorders, including Alzheimer's Disease (AD). We have recently developed a novel optically-responsive tool (the 'CofActor' system) that couples cof ilin and act in (key players in early stage cytoskeletal abnormalities associated with neurodegenerative disorders) with light-gated optogenetic proteins to provide spatial and temporal resolution of oxidative and energetic stress-dependent biochemical events. In contrast to currently available small-molecule based biosensors for monitoring changes in the redox environment of the cell, CofActor is a light-activated, genetically encoded redox sensor that can be activated with precise spatial and temporal control. Here we describe a protocol for the expression and activation of the CofActor system in dissociated hippocampal neuron cultures prepared from newborn mice. Cultures were transfected with Lipofectamine on the fifth day in vitro (DIV5), then exposed to cellular stress inducing stimuli, leading to the formation of actin-cofilin rods that can be observed using live cell imaging techniques. The protocol described here allows for studies of stress-related cytoskeletal dysregulation in live neurons exposed to neurodegenerative stimuli, such as toxic Aβ42 oligomers. Moreover, expression of the sensor in neurons isolated from transgenic mouse models of AD and/or mice KO for proteins involved in AD can advance our understanding of the molecular basis of early cytoskeletal dysfunctions associated with neurodegeneration.Mammalian target of rapamycin (mTOR) controls many crucial cellular functions, including protein synthesis, cell size, energy metabolism, lysosome and mitochondria biogenesis, and autophagy. Consequently, deregulation of mTOR signaling plays a role in numerous pathological conditions such as cancer, metabolic disorders and neurological diseases. Developing new tools to monitor mTOR spatiotemporal activation is crucial to better understand its roles in physiological and pathological conditions. However, the most widely used method to report mTOR activity relies on the quantification of specific mTOR-phosphorylated substrates by western blot. This approach requires cellular lysate preparation, which restricts the quantification to a single time point. see more Here, we present a simple protocol to study mTOR activity in living cells in real time using AIMTOR, an intramolecular BRET-based (bioluminescence resonance energy transfer) biosensor that we recently designed ( Bouquier et al., 2020 ). We describe transfection of AIMTOR in the C2C12 cell line and procedures to monitor BRET in a cell population using a plate reader and in single cells by microscopy. Importantly, this protocol is transposable to any cell line and primary cells. In addition, several subcellular compartment-specific versions of AIMTOR have been developed, enabling compartmentalized assessment of mTOR activity. This protocol describes how to use the sensitive AIMTOR biosensor to investigate mTOR signaling dynamics in living cells. Graphic abstract AIMTOR protocol overview from seeding cells to live BRET recording.Non-human primates (NHPs) have been widely used as a species model in studies to understand higher brain functions in health and disease. These studies employ specifically designed behavioral tasks in which animal behavior is well-controlled, and record neuronal activity at high spatial and temporal resolutions while animals are performing the tasks. Here, we present a detailed procedure to conduct single-unit recording, which fulfils high spatial and temporal resolutions while macaque monkeys (i.e., widely used NHPs) perform behavioral tasks in a well-controlled manner. This procedure was used in our previous study to investigate the dynamics of neuronal activity during economic decision-making by the monkeys. Monkeys' behavior was quantitated by eye position tracking and button press/release detection. By inserting a microelectrode into the brain, with a grid system in reference to magnetic resonance imaging, we precisely recorded the brain regions. Our experimental system permits rigorous investigation of the link between neuronal activity and behavior.Hepatitis B virus (HBV) is the major cause of liver diseases and liver cancer worldwide. After infecting hepatocytes, the virus establishes a stable episome (covalently closed circular DNA, or cccDNA) that serves as the template for all viral transcripts. Specific and accurate quantification of cccDNA is difficult because infected cells contain abundant replicative intermediates of HBV DNA that share overlapping sequences but arranged in slightly different forms. HBV cccDNA can be detected by Southern blot or qPCR methods which involve enzymatic digestion. These assays are laborious, have limited sensitivity, or require degradation of cellular DNA (which precludes simple normalization). The method described in this protocol, cccDNA inversion quantitative (cinq)PCR, instead uses a series of restriction enzyme-mediated hydrolysis and ligation reactions that convert cccDNA into an inverted linear amplicon, which is not amplified or detected from other forms of HBV DNA. Importantly, cellular DNA remains quantifiable during sample preparation, allowing normalization and markedly improving precision. Further, a second linear fragment (derived from enzymatic digestion of a separate region of the HBV DNA genome and is present in all forms of HBV DNA) can be used to simultaneously quantify total HBV levels. Graphic abstract Selective detection of HBV cccDNA and total HBV DNA using cinqPCR (Reproduced from Tu et al., 2020a ).Recent advances in stem cell technology have allowed researchers to generate 3D cerebral organoids (COs) from human pluripotent stem cells (hPSCs). Indeed, COs have provided an unprecedented opportunity to model the developing human brain in a 3D context, and in turn, are suitable for addressing complex neurological questions by leveraging advancements in genetic engineering, high resolution microscopy, and tissue transcriptomics. However, the use of this model is limited by substantial variations in the overall morphology and cellular composition of organoids derived from the same pluripotent cell line. To address these limitations, we established a robust, high-efficiency protocol for the production of consistent COs by optimizing the initial phase of embryoid body (EB) formation and neural induction. Using this protocol, COs can be reproducibly generated with a uniform size, shape, and cellular composition across multiple batches. Furthermore, organoids that developed over extended periods of time (3-6 months) showed the establishment of relatively mature features, including electrophysiologically active neurons, and the emergence of oligodendrocyte progenitors. Thus, this platform provides a robust experimental model that can be used to study human brain development and associated disorders. Graphic abstract Overview of cerebral organoid development from pluripotent stem cells.Odor-detecting olfactory sensory neurons residing in the nasal olfactory epithelium (OE) are the only neurons in direct contact with the external environment. As a result, these neurons are subjected to chemical, physical, and infectious insults, which may be the underlying reason why neurogenesis occurs in the OE of adult mammals. This feature makes the OE a useful model for studying neurogenesis and neuronal differentiation, with the possibility for systemic as well as local administration of various compounds and infectious agents that may interfere with these cellular processes. Several different chemical compounds have been shown to cause toxic injury to the OE, which can be used for OE ablation. We, and others, have found that the systemic administration of the hyperthyroid drug, methimazole, reliably causes olfactotoxicity as a side effect. Here, we outline an OE lesioning protocol for single or repeated ablation by methimazole. A single methimazole administration can be used to study neuroepithelial regeneration and stem cell activation, while repeated ablation and regeneration of OE enable the study of tissue stem cell exhaustion and generation of tissue metaplasia.Muscimol is a psychoactive isoxazole derived from the mushroom Amanita muscaria. As a potent GABAA receptor agonist, muscimol suppresses the activity of the central nervous system, reduces anxiety and induces sleep. We investigated the effects of muscimol on Drosophila behavior. Drosophila behavioral assays are powerful tools that are used to assess neural functions by focusing on specific changes in selected behavior, with the hypothesis that this behavioral change is due to alteration of the underlying neural function of interest. In this study, we developed a comparatively simple and cost-effective method for feeding adult flies muscimol, a pharmacologically active compound, and for quantifying the phenotypes of "resting" and "grooming+walking". This protocol may provide researchers with a convenient method to characterize small molecule-induced behavioral output in flies.In magnetometry using optically detected magnetic resonance of nitrogen vacancy (NV-) centers, we demonstrate more than one order-of-magnitude speed up with sequential Bayesian experiment design as compared with conventional frequency-swept measurements. The NV- center is an excellent platform for magnetometry with potential spatial resolution down to few nanometers and demonstrated single-defect sensitivity down to nT/Hz1/2. The NV- center is a quantum defect with spin S = 1 and coherence time up to several milliseconds at room temperature. Zeeman splitting of the NV- energy levels allows detection of the magnetic field via photoluminescence. We compare conventional NV- center photoluminescence measurements that use pre-determined sweeps of the microwave frequency with measurements using a Bayesian inference methodology. In sequential Bayesian experiment design, the settings with maximum utility are chosen for each measurement in real time based on the accumulated experimental data. Using this method, we observe an order of magnitude decrease in the NV- magnetometry measurement time necessary to achieve a set precision.Purpose A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47    mm and angular alignment of 0.35 ± 0.32    deg in phantom studies.
Here's my website: https://www.selleckchem.com/JAK.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.