Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Contagious bovine pleuropneumonia (CBPP) and contagious caprine pleuropneumonia (CCPP) are major infectious diseases of ruminants caused by mycoplasmas in Africa and Asia. In contrast with the limited pathology in the respiratory tract of humans infected with mycoplasmas, CBPP and CCPP are devastating diseases associated with high morbidity and mortality. Beyond their obvious impact on animal health, CBPP and CCPP negatively impact the livelihood and wellbeing of a substantial proportion of livestock-dependent people affecting their culture, economy, trade and nutrition. The causative agents of CBPP and CCPP are Mycoplasma mycoides subspecies mycoides and Mycoplasma capricolum subspecies capripneumoniae, respectively, which have been eradicated in most of the developed world. The current vaccines used for disease control consist of a live attenuated CBPP vaccine and a bacterin vaccine for CCPP, which were developed in the 1960s and 1980s, respectively. Both of these vaccines have many limitations, so better vaccines are urgently needed to improve disease control. In this article the research community prioritized biomedical research needs related to challenge models, rational vaccine design and protective immune responses. Therefore, we scrutinized the current vaccines as well as the challenge-, pathogenicity- and immunity models. We highlight research gaps and provide recommendations towards developing safer and more efficacious vaccines against CBPP and CCPP.Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. RVFV induces severe disease in newborns and abortion in pregnant ruminants. The viral genome consists of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M segment encodes a glycoprotein precursor protein that is co-translationally cleaved into the two structural glycoproteins Gn and Gc, which are involved in receptor attachment and cell entry. We previously constructed a four-segmented RVFV (RVFV-4s) by splitting the M genome segment into two M-type segments encoding either Gn or Gc. RVFV-4s replicates efficiently in cell culture but was shown to be completely avirulent in mice, lambs and pregnant ewes. Here, we show that a RVFV-4s candidate vaccine for veterinary use (vRVFV-4s) does not disseminate in vaccinated animals, is not shed or spread to the environment and does not revert to virulence. Furthermore, a single vaccination of lambs, goat kids and calves was shown to induce protective immunity against a homologous challenge. Finally, the vaccine was shown to provide full protection against a genetically distinct RVFV strain. Altogether, we demonstrate that vRVFV-4s optimally combines efficacy with safety, holding great promise as a next-generation RVF vaccine.Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Trichostatin A Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
Breastfeeding as an infant appears protective against later development of some autoimmune diseases, but research into its influence on multiple sclerosis (MS) risk has yielded inconclusive results.
We investigated the possible impact of breastfeeding on MS risk.
We used two population-based case-control studies comprising 3670 cases and 6737 matched controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between MS and exposure to prolonged breastfeeding (4 months or longer) versus reduced breastfeeding (less than 4 months). A meta-analysis of case-control studies that assessed the impact of breastfeeding on MS risk among women and men was conducted.
Prolonged breastfeeding was associated with reduced MS risk among men (OR 0.7, 95% CI 0.5-0.9) but not among women (OR 0.9, 95% CI 0.8-1.1). Among men, a synergistic effect was observed between
carrier status and reduced breastfeeding.
Findings from the current study add to accumulating evidence that breastfeeding may be a modifiable protective factor for reducing the risk of MS in offspring. When possible, mothers should be supported to breastfeed their infants; however, the mechanism of a sex-specific biologic effect of breastfeeding on MS risk is unclear.
Findings from the current study add to accumulating evidence that breastfeeding may be a modifiable protective factor for reducing the risk of MS in offspring. When possible, mothers should be supported to breastfeed their infants; however, the mechanism of a sex-specific biologic effect of breastfeeding on MS risk is unclear.Digital behaviour change interventions can provide effective and cost-effective treatments for a range of health conditions. However, after rigorous evaluation, there still remain challenges to disseminating and implementing evidence-based interventions that can hinder their effectiveness 'in the real world'. We conducted a large-scale randomised controlled trial of self-guided breathing retraining, which we then disseminated freely as a digital intervention. Here we share our experience of this process after one year, highlighting the opportunities that digital health interventions can offer alongside the challenges that must be addressed in order to harness their effectiveness. Whilst such treatments can support many individuals at extremely low cost, careful dissemination strategies should be proactively planned in order to ensure such opportunities are maximised and interventions remain up to date in a fast-moving digital landscape.
Severe acute kidney injury (AKI) is a potential complication of COVID-19-associated critical illness. This has implications for the management of COVID-19-associated AKI and the resulting increased need for kidney replacement therapy (KRT) in the intensive care unit (ICU) and elsewhere in the hospital. The Canadian Society of Nephrology COVID-19 Rapid Review Team has sought to collate and synthesize currently available resources to inform ethically justifiable decisions. The goal is the provision of the best possible care for the largest number of patients with kidney disease while considering how best to ensure the safety of the health care team.
Local, provincial, national, and international guidance and planning documents related to the COVID-19 pandemic; guidance documents available from nephrology and critical care-related professional organizations; recent journal articles and preprints related to the COVID-19 pandemic; expert opinion from nephrologists from across Canada.
A working group of kidnethe implementation of many suggestions. Knowledge is advancing rapidly in the area of COVID-19 and suggestions may become outdated quickly.
Given that most acute KRT related to COVID-19 is likely to be required initially in the ICU setting, close collaboration and planning between critical care and nephrology programs is required. Suggestions may be updated as newer evidence becomes available.
Given that most acute KRT related to COVID-19 is likely to be required initially in the ICU setting, close collaboration and planning between critical care and nephrology programs is required. Suggestions may be updated as newer evidence becomes available.In this paper, I argue that the principle of respect for autonomy can serve as the basis for laws that significantly limit conduct, including orders mandating isolation and quarantine. This thesis is fundamentally at odds with an overwhelming consensus in contemporary bioethics that the principle of respect for autonomy, while important in everyday clinical encounters, must be 'curtailed', 'constrained', or 'overridden' by other principles in times of crisis. I contend that bioethicists have embraced an indefensibly 'thin' notion of autonomy that uproots the concept from its foundations in Kantian ethics. According to this thin conception, respect for autonomy, if unconditioned by competing principles (beneficence, justice, non-maleficence) would give competent adults the right to do anything they desired to do so long as they satisfied certain baseline psychological conditions. I argue that the dominant 'principlist' model of bioethical reasoning depends on this thin view of autonomy and show how it deprives us of powerful analytical tools that would help us to think seriously about the foundations of human rights, justice, and law.
Website: https://www.selleckchem.com/products/Trichostatin-A.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team