Notes
Notes - notes.io |
The antibody detection limit was determined through successive injections into the SPR apparatus - these injections ranged from pure (without dilution) to 1 200 μL. The system has shown good reproducibility between runs after coated surface regeneration with 0.1 M glycine-HCl solution (pH 3.0); all experiments were tested in triplicate. The antibodies targeted both S and N fragments and gave a high assay sensitivity by identifying 19 out of 20 COVID-19-positive patients. Most importantly, the assay time took less than 10 min. The results of this study indicate that the proposed simple strategy demonstrates high sensitivity and time-saving in the detection of SARS-CoV-2 response antibodies.The effect of platinum-supported nano-shaped ceria catalysts on methanol partial oxidation and methyl formate product selectivity has been investigated. A Pt-supported CeO2 nanocube catalyst had a higher turnover frequency than nanosphere catalysts; however, nanosphere catalysts showed higher selectivity towards methyl formate. The observed ceria shape effect in catalysis was associated with the shape-dependent Pt dispersion and its oxidation states. Furthermore, in situ studies revealed that the reduced platinum and mono-dentate methoxy group were responsible for the higher turnover frequency.Synergistic covalent-and-supramolecular polymers, in which covalent polymers and supramolecular polymers connect with each other through [2]pseudorotaxane moieties, are designed and synthesized. find more The unique topological structure effectively enhances the synergistic effect between these two polymers, thereby generating a novel class of mechanically adaptive materials.A series of alkoxylated isobenzofuranones were conveniently synthesized from the reaction of 2-(1-arylvinyl)benzoic acids with PhI(OR)2, generated in situ from the reaction of iodosobenzene (PhIO) with alkyl alcohols. This hypervalent iodine mediated one-pot transformation is postulated to undergo a cascade reaction involving lactonization, 1,2-aryl migration and alkoxylation processes. The organocatalytic and chiral organoiodine-catalyzed asymmetric reactions of the current transformation were also probed.Oxygen reduction reaction (ORR) plays a pivotal role in electrochemical energy conversion and commodity chemical production. Oxygen reduction involving a complete four-electron (4e-) transfer is important for the efficient operation of polymer electrolyte fuel cells, whereas the ORR with a partial 2e- transfer can serve as a versatile method for producing industrially important hydrogen peroxide (H2O2). For both the 4e- and 2e- pathway ORR, platinum-group metals (PGMs) have been materials of prevalent choice owing to their high intrinsic activity, but they are costly and scarce. Hence, the development of highly active and selective non-precious metal catalysts is of crucial importance for advancing electrocatalysis of the ORR. Heteroatom-doped carbon-based electrocatalysts have emerged as promising alternatives to PGM catalysts owing to their appreciable activity, tunable selectivity, and facile preparation. This review provides an overview of the design of heteroatom-doped carbon ORR catalysts with tailored 4e- or 2e- selectivities. We highlight catalyst design strategies that promote 4e- or 2e- ORR activity. We also summarise the major active sites and activity descriptors of the respective ORR pathways and describe the catalyst properties controlling the ORR mechanisms. We conclude the review with a summary and suggestions for future research.DBP, one of the phthalic acid esters (PAEs), is known as an endocrine disruptor and is toxic to humans in abnormal concentrations. Here, a high-density and ordered SERS substrate based on the self-assembly of triangular Ag nanoplate (TAgNP) arrays is developed for DBP detection. Benefiting from the ordered arrangement and sharp corners of TAgNPS, the arrays can provide sufficient and uniform hotspots for reproducible and highly active SERS effects. Using Rhodamine 6G (R6G) as a reporter molecule, the SERS enhancement factor (EF) of the TAgNP arrays was found to be as high as 1.2 × 107 and the relative standard deviation was 6.56%. As a trial for practical applications, the TAgNP array substrates were used for the detection of dibutyl phthalate (DBP) in edible oils. In this assay, edible oil samples were added to hexane as an organic phase for the formation of the TAgNP arrays, which caused DBP to be loaded at hotspots. DBP in edible oils could be identified at concentrations as low as 10-7 M. This SERS substrate based on the TAgNP arrays has great potential applications in the high sensitivity and reproducible detection of contaminants in food.Achieving efficient chiral discrimination by a convenient method remains a challenge in pharmaceutical and biotechnology industries. Our aim in this paper was to develop a dual-signaling enantioselective sensing strategy based on the competitive binding assay. A combination of β-cyclodextrin (β-CD) and methylene blue (MB) was used as an enantioselective discrimination probe to develop a straightforward electrochemical chiral sensor using the drug naproxen (R-and S-NaX) as the representative enantiomers. The principle relied on the difference between two enantiomers in the ability to replace a pre-binding redox probe, which in turn resulted in different dual signals for the two enantiomers. The applicability of the optimized procedure was demonstrated by the analysis of NaX enantiomers in the range of 0.4-6.0 μM. Featuring both signal-on and signal-off elements, the electrode presented significantly enhanced electrochemical activity with a low limit of detection (LOD) of 0.07 μM. We expect that our work will inspire interesting engineering strategies for developing novel enantioselective electrochemical sensors.This study presents a facile treatment to modify the commercial irregular shaped polycrystalline Pb into well-defined octahedral Pb with unique Pb(111) facets. Efficient, selective, and stable electrochemical reduction of CO2 toward formate has been achieved on the treated Pb electrode. The faradaic efficiency of formate production from the CO2RR is 98.03%, which is the highest reported to date. The results from the combination of theoretical calculations and experimental tests demonstrate that the enhanced catalytic performance on the treated Pb electrode stems from the electrode morphology characterized by a unique Pb(111) surface with lower Gibbs free energies (ΔG) for the formation of intermediate OCHO*.Herein, we report an iridium-catalyzed branched-selective hydroacylation of 1-aryl 1,3-dienes with salicylaldehydes under mild conditions with no need of phosphine ligands. With this protocol, a series of α-branched β,γ-unsaturated o-hydroxyacetophenones with biological potentials were synthesized in high efficiency with excellent regioselectivities. When simple 1,3-butadiene or isoprene instead of 1-aryl 1,3-dienes were used, exclusive linear-selective hydroacylation products were obtained.The production of gluten free crackers is challenging because the formation of a gluten network is required. This study investigated the effects of psyllium seed husk powder (PSY), methylcellulose (MC), pregelatinised starch (PGS), and cold water swelling starch (CWSS) on gluten free crackers made of rice flour. The evaluations of pasting properties, dough rheological properties, textural properties, acoustic emissions, and structures were included in this study. Gluten free cracker doughs were more solid-like compared to wheat doughs based on their frequency dependence shown in the mechanical spectra. However, PGS significantly increased the fluid-like property and shapeability. The addition of MC at a high level significantly modified the pasting profile and a secondary swelling and breakdown might occur. As for the crackers, PSY and PGS crackers had comparable textural properties and sound release to wheat crackers, while CWSS crackers were slightly weaker. However, MC did not improve the textural properties compared to rice crackers because the interaction between the MC molecules was limited at the low water addition level, which limited its functionality in cracker making.Molecular diagnosis of viral genotyping devoid of polymerase chain reaction (PCR) amplification in clinical cohorts has hitherto been challenging. Here we present a simplified molecular diagnostic strategy for direct genotyping of hepatitis C virus (HCV) 1 and 3 (prevalent worldwide) using a combination of rationally designed genotype-specific antisense oligonucleotides (ASOs) and plasmonic gold nanoparticles. The ASOs specific to genotypes 1 and 3 have been designed from the nonstructural region 5A (NS5A) of the viral genome using the ClustalW multiple sequence alignment tool. A total of 79 clinical samples including 18 HCV genotype 1, 18 HCV genotype 3, one HIV positive, one HBV positive, and 41 healthy controls have been tested against both the designed ASOs. The study reveals 100% specificity and sensitivity with the employed samples and thereby opens up new avenues for PCR-free direct genotyping of other viruses as well, through the rational design of ASOs.Sodium dodecyl sulfate (SDS) has a wide range of applications in the chemical industry due to its excellent characteristics including good emulsification, foaming, water solubility and stability, easy synthesis and low price. However, it is a kind of anionic surfactant which is slightly toxic to the human body, and use of a large amount will cause potential pollution of the environment. Therefore, the development of a simple method to realize the monitoring of SDS in the environment is of great significance. Herein, a cationic fluorescent probe was prepared by the condensation reaction between 4-di-p-tolylamino-benzaldehyde and 3-ethylbenzothiazolium iodide. It can be used for the quantitative determination of SDS in the range of 5-50 μM showing red fluorescence and high selectivity by forming banded assemblies. This work provides an effective tool based on a new strategy for the detection of SDS.Bioactive molecules that enhance or induce osteogenic potential of bone precursor cells have shown vital roles in bone tissue engineering. Herein, we report the design and synthesis of a novel diketopiperazine (DT) that induces osteoblastic differentiation of pre-osteoblasts and bone-marrow-derived stem cells in vitro and enhances the osteogenic potential of cryogel matrix. Such functional diketopiperazines can serve as potential scaffolds for bone healing and regeneration.Since oxidative stress has been recognized as a major factor contributing to the progression of several neurodegenerative disorders, reactive oxygen species (ROS) including superoxide have received great attention as a representative molecular marker for the diagnosis of Alzheimer's disease (AD). Here, superoxide-sensitive fluorogenic molecular probes, benzenesulfonylated resorufin derivatives (BSRs), were newly devised for optical bioimaging of oxidative events in neurodegenerative processes. BSRs, fluorescence-quenched benzenesulfonylated derivatives of resorufin, were designed to recover their fluorescence upon exposure to superoxide through a selective nucleophilic uncaging reaction of the benzenesulfonyl cage. Among BSRs, BSR6 presented the best sensitivity and selectivity to superoxide likely due to the optimal reactivity matching between the nucleophilicity of superoxide and its electrophilicity ascribed to the highly electron-withdrawing pentafluoro-substitution on the benzenesulfonyl cage. Fluorescence imaging of inflammatory cells and animal models presented the potential of BSR6 for optical sensing of superoxide in vitro and in vivo.
My Website: https://www.selleckchem.com/products/olcegepant.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team