NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

{ AXISYMMETRIC_STRESS.PDE }
{ ******************************************************

This example shows the application of FlexPDE to problems in
axi-symmetric stress.

The equations of Stress/Strain arise from the balance of forces in a
material medium, expressed in cylindrical geometry as

dr(r*Sr)/r - St/r + dz(Trz) + Fr = 0
dr(r*Trz)/r + dz(Sz) + Fz = 0

where Sr, St and Sz are the stresses in the r- theta- and z- directions,
Trz is the shear stress, and Fr and Fz are the body forces in the
r- and z- directions.

The deformation of the material is described by the displacements,
U and V, from which the strains are defined as

er = dr(U)
et = U/r
ez = dz(V)
grz = dz(U) + dr(V).

The quantities U,V,er,et,ez,grz,Sr,St,Sz and Trz are related through the
constitutive relations of the material,

Sr = C11*er + C12*et + C13*ez - b*Temp
St = C12*er + C22*et + C23*ez - b*Temp
Sz = C13*er + C23*et + C33*ez - b*Temp
Trz = C44*grz

In isotropic solids we can write the constitutive relations as

C11 = C22 = C33 = G*(1-nu)/(1-2*nu) = C1
C12 = C13 = C23 = G*nu/(1-2*nu) = C2
b = alpha*G*(1+nu)/(1-2*nu)
C44 = G/2

where G = E/(1+nu) is the Modulus of Rigidity
E is Young's Modulus
nu is Poisson's Ratio
and alpha is the thermal expansion coefficient.

from which

Sr = C1*er + C2*(et + ez) - b*Temp
St = C1*et + C2*(er + ez) - b*Temp
Sz = C1*ez + C2*(er + et) - b*Temp
Trz = C44*grz

Combining all these relations, we get the displacement equations:

dr(r*Sr)/r - St/r + dz(Trz) + Fr = 0

dr(r*Trz)/r + dz(Sz) + Fz = 0

These can be written as

div(P) = St/r - Fr
div(Q) = -Fz

where P = [Sr,Trz]
and Q = [Trz,Sz]

The natural (or "load") boundary condition for the U-equation defines the
outward surface-normal component of P, while the natural boundary condition
for the V-equation defines the surface-normal component of Q. Thus, the
natural boundary conditions for the U- and V- equations together define
the surface load vector.

On a free boundary, both of these vectors are zero, so a free boundary
is simply specified by

load(U) = 0
load(V) = 0.


The problem analyzed here is a steel doughnut of rectangular cross-section,
supported on the inner surface and loaded downward on the outer surface.

***************************************** }

title "The spherical shell"

coordinates
ycylinder('R','Z')

select

errlim = 1e-5

cubic


variables
U { declare U and V to be the system variables }
V

definitions
alpha0=3
beta0=80
alpha=alpha0*Pi/180
beta=beta0*Pi/180
rho=sqrt(r^2+z^2)
!theta=arctan(z/rho)
cost=r/rho
sint=z/rho
r1 = 1.0
r2 =1.04
q = 1e4
L = 3.0
r0=(r1+r2)/2

nu = 0.3
En = (20e10)
lambd=nu*En/((1+nu)*(1-2*nu))
mu=En/(2*(1+nu))
C1=lambd+2*mu
C2=lambd




Fr = 0
Fz = 0
mm=1e8




b11 = 5.13e11
b22 = 12e11
b33 = 12e11
b12 = 4.42e11
b13 =4.42e11
b23 = 4.81e11
b55 = 1.85e11



er = dr(U)
et = U/r
ez = dz(V)
grz = dz(U) + dr(V)

Ur=U*cost+V*sint
Ut=-U*sint+V*cost
n1=cost
n2=sint
m1=-sint
m2=cost

Sr = ((cost^2*b11+sint^2*b12)*cost^2+(cost^2*b12+sint^2*b22)*sint^2+4*cost^2*sint^2*b55)*er+(cost^2*b12+sint^2*b23)*et+((cost^2*b11+sint^2*b12)*sint^2+(cost^2*b12+sint^2*b22)*cost^2-4*cost^2*sint^2*b55)*ez+(-(cost^2*b11+sint^2*b12)*cost*sint+(cost^2*b12+sint^2*b22)*cost*sint+2*cost*sint*b55*(cost^2-sint^2))*grz
St = (cost^2*b12+sint^2*b23)*er+b22*et+(sint^2*b12+cost^2*b23)*ez+(-cost*sint*b12+cost*sint*b23)*grz
Sz = ((sint^2*b11+cost^2*b12)*cost^2+(sint^2*b12+cost^2*b22)*sint^2-4*cost^2*sint^2*b55)*er+(sint^2*b12+cost^2*b23)*et+((sint^2*b11+cost^2*b12)*sint^2+(sint^2*b12+cost^2*b22)*cost^2+4*cost^2*sint^2*b55)*ez+(-(sint^2*b11+cost^2*b12)*cost*sint+(sint^2*b12+cost^2*b22)*cost*sint-2*cost*sint*b55*(cost^2-sint^2))*grz
Trz = ((-cost*sint*b11+cost*sint*b12)*cost^2+(-cost*sint*b12+cost*sint*b22)*sint^2+2*cost*sint*b55*(cost^2-sint^2))*er+(-cost*sint*b12+cost*sint*b23)*et+((-cost*sint*b11+cost*sint*b12)*sint^2+(-cost*sint*b12+cost*sint*b22)*cost^2-2*cost*sint*b55*(cost^2-sint^2))*ez+(-(-cost*sint*b11+cost*sint*b12)*cost*sint+(-cost*sint*b12+cost*sint*b22)*cost*sint+(cost^2-sint^2)^2*b55)*grz

rt1=Sr*n1+Trz*n2
rt2=Trz*n1+Sz*n2
SigmaR=rt1*n1+rt2*n2
TauR=-rt1*n2+rt2*n1
tt1=Sr*m1+Trz*m2
tt2=Trz*m1+Sz*m2
SigmaT=-(tt1*m1+tt2*m2)
TauT=-(-tt1*m2+tt2*m1)


initial values
U = 0
V = 0

equations { define the axi-symmetric displacement equations }

U: dr(r*Sr)/r - St/r + dz(Trz) + Fr = 0
V: dr(r*Trz)/r + dz(Sz) + Fz = 0

constraints { prevent rigid-body motion: }

integral(V) = 0


boundaries
region 1
start "BDRY" (r1*cos(alpha),r1*sin(alpha))
load(U) = q* rho^2*sin(Pi/9)*sin(alpha)
load(V) = -q*rho^2*sin(Pi/9)*cos(alpha)


line to (r2*cos(alpha),r2*sin(alpha))
value(U) = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
value(V) = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ARC ( CENTER = 0,0 ) ANGLE=beta0-alpha0

load(U) = q* rho^2*(cos(Pi/30)-1)*cos(beta) { define a free boundary on inner wall }
load(V) = q* rho^2*(cos(Pi/30)-1)*sin(beta)


line to (r1*cos(beta),r1*sin(beta))


value(U) = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
value(V) = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



ARC ( CENTER = 0,0 ) ANGLE=-beta0+alpha0


monitors
grid(r+mm*U,z+mm*V)

plots
grid(r+mm*U,z+mm*V)


contour(Ur) painted as "Ur-Displacement"
elevation(Ur,0) FROM (r1*cos((alpha+beta)/4),r1*sin((alpha+beta)/4)) TO (r2*cos((alpha+beta)/4),r2*sin((alpha+beta)/4))
{elevation(Ur,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2))}
!!!!!!!!!!!!!!!!!!
elevation(Ur,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2)) export format "#x#b#1" file="file_bir_Ur.txt"
!!!!!!!!!!!!!!!!!
elevation(Ur,0) FROM (r1*cos((alpha+beta)/1.5),r1*sin((alpha+beta)/1.5)) TO (r2*cos((alpha+beta)/1.5),r2*sin((alpha+beta)/1.5))

contour(Ut) painted as "Ut-Displacement" { show displacement field }
elevation(Ut,0) FROM (r1*cos((alpha+beta)/4),r1*sin((alpha+beta)/4)) TO (r2*cos((alpha+beta)/4),r2*sin((alpha+beta)/4))

!!!!!!!!!!!!!!!!!!
elevation(Ut,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2)) export format "#x#b#1" file="file_bir_Ut.txt"
!!!!!!!!!!!!!!!!
elevation(Ut,0) FROM (r1*cos((alpha+beta)/1.5),r1*sin((alpha+beta)/1.5)) TO (r2*cos((alpha+beta)/1.5),r2*sin((alpha+beta)/1.5))

contour(SigmaR) painted as "R-Stress" { show displacement field }
elevation(SigmaR,0) FROM (r1*cos((alpha+beta)/4),r1*sin((alpha+beta)/4)) TO (r2*cos((alpha+beta)/4),r2*sin((alpha+beta)/4))
elevation(SigmaR,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2))
!!!!!!!!!!!!!!!!!!
elevation(SigmaR,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2)) export format "#x#b#1" file="file_bir_SigmaR.txt"
!!!!!!!!!!!!!!!!!
elevation(SigmaR,0) FROM (r1*cos((alpha+beta)/1.5),r1*sin((alpha+beta)/1.5)) TO (r2*cos((alpha+beta)/1.5),r2*sin((alpha+beta)/1.5))

contour(TauR) painted as "RT-Stress" { show displacement field }
elevation(TauR,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2))
!!!!!!!!!!!!!!!!!!
elevation(TauR,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2)) export format "#x#b#1" file="file_bir_TauR.txt"
!!!!!!!!!!!!!!!!!

contour(SigmaT) painted as "T-Stress" { show displacement field }
elevation(SigmaT) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2))
!!!!!!!!!!!!!!!!!!
elevation(SigmaT,0) FROM (r1*cos((alpha+beta)/2),r1*sin((alpha+beta)/2)) TO (r2*cos((alpha+beta)/2),r2*sin((alpha+beta)/2)) export format "#x#b#1" file="file_bir_SigmaT.txt"
!!!!!!!!!!!!!!!!!



vector(U,V) painted as "Displacement" { show displacement field }


end 109550200

     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.