NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Johnsonii Affect Properties Performance Exclusion Agent Changes Adhesion Reduction Ability Stress
Colanic acid compound with Klebsiella pneumoniae Extracellular Polysaccharides Exposes Biofilm Associated Bacteria. Klebsiella pneumoniae produces a thick capsule layer composed of extracellular polysaccharides protecting the bacterial cells from clearance by innate host immunity during infection. Here we characterize the interactions of a structurally diverse set of host defense peptides with K. pneumoniae extracellular polysaccharides. Remarkably, we found that all host defense peptides were active against a diverse set of K. pneumoniae strains, including hypermucoviscous strains with extensive capsule production, and aggregated with most potent antimicrobial and induced the most capsule aggregation.

In addition to capsule aggregation, we found that bac7 (1-35) could also disrupt pre-formed hypermucoviscous K. pneumoniae biofilm. Further analysis using scanning electron microscopy revealed the biofilm matrix of a hypermucoviscous strain is removed by bac7 (1-35) exposing associated bacterial cells. This is the first description of a host defense peptide interacting with capsular and biofilm extracellular polysaccharides to expose cells from a K. pneumoniae biofilm matrix and suggests that features of polyproline peptides may be uniquely suited for extracellular polysaccharide interactions. IMPORTANCE Klebsiella pneumoniae bacterial infections are a major threat to human health as mortality rates are steadily on the rise. A defining characteristic of K.

pneumoniae is the robust polysaccharide capsule that aids in resistance to the human immune system. We have previously discovered that a synthetic peptide could aggregate with capsule polysaccharides and disrupt the capsule of K. pneumoniae. Here we describe that host defense peptides also aggregate with capsule produced from hypermucoviscous the polyproline peptide bac7 (1-35) had the greatest antimicrobial activity and caused the most capsule aggregation. Interestingly, bac7 (1-35) also removed the biofilm matrix of hypermucoviscous K. pneumoniae exposing the associated bacterial cells. This is the first description of a polyproline peptide interacting with capsular and biofilm polysaccharides to expose cells from a K.

Conflict of interest statement: The authors declare no conflict of interest. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Bacteria have evolved the ability to form multicellular, surface-adherent communities called biofilms that allow survival in hostile environments. In clinical settings, bacteria are exposed to various sources of stress, including trigger adaptive responses in bacterial cells. The combination of this and other defense mechanisms results in the formation of highly (adaptively) resistant multicellular structures that are recalcitrant to host immune clearance mechanisms and very difficult to eradicate with the currently available antimicrobial agents, which are generally developed for the eradication of free-swimming (planktonic) bacteria. However, novel strategies that specifically target the biofilm mode of growth have been recently described, thus providing the basis for future anti-biofilm therapy. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Most field isolates of the swine pathogen Actinobacillus pleuropneumoniae form tenacious biofilms on abiotic surfaces in vitro.

We purified matrix polysaccharides from biofilms produced by A. pleuropneumoniae field isolates IA1 and IA5 (serotypes 1 and 5, respectively), and determined their chemical structures by using NMR spectroscopy. Both strains produced matrix polysaccharides consisting of linear chains of N-acetyl-D-glucosamine (GlcNAc) of the GlcNAc residues in each polysaccharide were N-deacetylated. These structures were nearly identical to those of biofilm matrix polysaccharides produced by Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. PCR analyses indicated that a gene encoding the PGA-specific glycoside transferase enzyme PgaC was present on the chromosome of 15 out of 15 A. pleuropneumoniae reference strains (serotypes 1-12) and 76 out of 77 A. pleuropneumoniae field isolates (serotypes 1, 5 and 7).

A pgaC mutant of strain IA5 failed to form biofilms in vitro, as did wild-type strains IA1 and IA5 when grown in broth supplemented with the PGA-hydrolyzing enzyme dispersin B. Grab it today of IA5 biofilms with dispersin B rendered them more sensitive to killing by ampicillin. Our findings suggest that PGA functions as a major biofilm adhesin in A. pleuropneumoniae.
My Website: http://en.wikipedia.org/wiki/Colanic_acid
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.