Notes
![]() ![]() Notes - notes.io |
The automobile exhaust, industrial emission, liquefied petroleum gas/natural gas (LPG/NG), combustion, gasoline evaporation, internal combustion engine emission and solvent usage were identified as major sources of VOCs by Positive Matrix Factorization (PMF) model in Tianjin, and the contributions to VOCs for the entire year were 23%, 19%, 18%, 10%, 8%, 5% and 4%, respectively. The conditional probability function (CPF) analysis indicated that the contributing directions of automobile exhaust and industrial emission were mainly affected by source distributions, and that of other sources might be mainly affected by wind direction. The backward trajectory analysis indicated that the trajectory of air mass originated from Mongolia, which reflected the features of large-scale and long-distance air transport, and that of beginning in Jiangsu, Shandong and Tianjin, which showed the features of small-scale and short-distance. Tianjin, Beijing, Hebei and Northwest of Shandong were identified as major potential source-areas of VOCs by using potential source contribution function (PSCF) and concentration-weighted Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen.Research Institute of Industrial Catalysis, School of Chemistry and Molecular Lignin is the most abundant biopolymer with aromatic building blocks and its valorization to sustainable chemicals and fuels has extremely great potential to reduce the excessive dependence on fossil resources, although such conversions remain challenging. The purpose of this Review is to present an insight into the catalytic conversion of lignin involving hydrogen, including reductive depolymerization and the hydrodeoxygenation of lignin-derived monomers to arenes, cycloalkanes and phenols, with a main focus on the catalyst systems and reaction mechanisms.
Learn more of hydrogenation sites (Ru, Pt, Pd, Rh) and acid sites (Nb, Ti, Mo), as well as their interaction in selective hydrodeoxygenation reactions are emphasized. Furthermore, some inspirational strategies for the production of other value-added chemicals are mentioned. Finally, some personal perspectives are provided to highlight the opportunities within this attractive © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.The crystal and molecular structure of sodium 4-(2,4,6-triisopropylbenzoyl)benzoate in terms of the photochemical behaviour of Wyspiańskiego 27, Wrocław 50-370, Poland.Contrary to the known 4-(2,4,6-triisopropylbenzoyl)benzoate salts, di-μ-aqua-bis[tetraaquasodium(I)] bis[4-(2,4,6-triisopropylbenzoyl)benzoate] Norrish-Yang reaction in the crystalline state. In order to explain this photochemical inactivity, the intermolecular interactions were analyzed by means of the Hirshfeld surface and intramolecular geometrical parameters describing the possibility of a Norrish-Yang reaction were calculated.
The reasons for the behaviour of the title salt are similar crystalline environments for both the o-isopropyl groups in the anion, resulting in similar geometrical parameters and orientations, and that these interaction distances differ significantly from those found in salts where the photochemical reaction occurs.Photochemical characterization of paddy water during rice cultivation: Formation of reactive intermediates for As(III) oxidation.Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH Although the photochemical behavior of surface water and its effects on pollutant transformation have been studied extensively in recent years, the photochemistry of paddy water remains largely unknown. In Seebio Light-Activated Acid Producer , we examined the photochemical processes involving paddy water samples collected at four different cultivation stages of rice. Triplet dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH) were found to be the dominant reactive intermediates (RIs), and their apparent quantum yields and steady-state concentrations were quantified. Compared with the typical surface water, quantum yields of 3DOM* and •OH were comparable, while quantum yields of 1O2 were about 2-6 times higher than those of surface water. Fluorescence emission-excitation matrix (EEM) spectra, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), and statistical analysis revealed that DOM properties and nitrite concentration were the main factor influencing RIs generation.
The results suggest that DOM with lower molecular weight and humification extent generated more RIs, and nitrite contributed to 23%-100% of •OH generation. EEM and FTICR-MS data showed that DOM with more saturated and less aromatic formulas could produce more 3DOM* under the irradiation, while the polyphenolic components of DOM inhibited the formation of RIs. Moreover, RIs significantly enhanced arsenite (As(III)) oxidation with oxidation rate increased by 1-4 times in paddy water, and •OH and 3DOM* were the main RIs responsible for As(III) oxidation. This study provides new insight into the pathways of arsenite abiotic transformation in paddy soil and water.
Homepage: http://allinno.com/news/166.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team