Notes
Notes - notes.io |
There was an error in the original article [...].In our recently published article [...].The authors wish to make the following corrections to their paper [...].Thanks to its small size, external fertilization and fecundity, over the past four decades, zebrafish (Danio rerio) has become the dominant fish model species in biological and biomedical research. Multiple lines of evidence, however, suggest that the reliance on only a handful of genetic model organisms is problematic, as their unique evolutionary histories makes them less than ideal to study biological questions unrelated to their historically contingent adaptations. Therefore, a need has emerged to develop novel model species, better suited for studying particular problems. The paradise fish (Macropodus opercularis) has a much more complex behavioral repertoire than zebrafish and has been a favored model animal in ethological research during the last decades of the previous century. We believe that with currently available, easily adaptable genetic toolkits, this species could be easily developed into a popular model of behavioral genetics. Despite its earlier popularity, however, the description of a detailed housing and husbandry protocol for this species is still missing from scientific literature. We present here a detailed description of how to raise and breed paradise fish successfully under laboratory conditions, and also discuss some of the challenges we faced while creating a stable breeding population for this species in our facility.Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors. In addition to experimental investigations, first-principle methods have enabled graphene-based sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors. The theoretical results obtained to date can greatly help experimental groups to design novel and efficient graphene-based toxic gas sensors.Using semi-automated software simplifies quantitative analysis of the visible burden of disease on whole-body MRI diffusion-weighted images. To establish the intra- and inter-observer reproducibility of apparent diffusion coefficient (ADC) measures, we retrospectively analyzed data from 20 patients with bone metastases from breast (BCa; n = 10; aged 62.3 ± 14.8) or prostate cancer (PCa; n = 10; aged 67.4 ± 9.0) who had undergone examinations at two timepoints, before and after hormone-therapy. Four independent observers processed all images twice, first segmenting the entire skeleton on diffusion-weighted images, and then isolating bone metastases via ADC histogram thresholding (ADC 650-1400 µm2/s). Dice Similarity, Bland-Altman method, and Intraclass Correlation Coefficient were used to assess reproducibility. Inter-observer Dice similarity was moderate (0.71) for women with BCa and poor (0.40) for men with PCa. Nonetheless, the limits of agreement of the mean ADC were just ±6% for women with BCa and ±10% for men with PCa (mean ADCs 941 and 999 µm2/s, respectively). Inter-observer Intraclass Correlation Coefficients of the ADC histogram parameters were consistently greater in women with BCa than in men with PCa. While scope remains for improving consistency of the volume segmented, the observer-dependent variability measured in this study was appropriate to distinguish the clinically meaningful changes of ADC observed in patients responding to therapy, as changes of at least 25% are of interest.Leptospirosis in cattle has important economic effects on the infected farms. Moreover, livestock farming is considered a major occupational risk factor for the transmission of Leptospira infection to humans. A survey was performed to determine the overall and within-herd seroprevalence and mapping of different Leptospira serovars in dairy cattle from farms located in some municipalities of the Colombian department of Boyacá. Nine hundred and fifty-nine animals, from 20 unvaccinated and one vaccinated herd, were included in the study. Anti-Leptospira serum antibodies were detected by the microscopic agglutination test (MAT). Only one herd was seronegative. Overall seroprevalence to at least one serovar of Leptospira was 24.1% for unvaccinated animals and 62.3% for animals from the vaccinated herd. A very high within-herd seroprevalence (>60%) was present in 20% of the unvaccinated herds. The presence in the vaccinated herd of 20/398 animals showing high titers, between 1000 and 4000, to at least one serovar of Leptospira suggest that some animals could have been infected. Moreover, due to the presence of seronegative animals, a failure of vaccination immunity or the presence of unvaccinated animals in the vaccinated herd cannot be excluded. In all farms, domestic animals other than cattle were present. Considering the farming practices occurring on dairy farms in the study area, higher hygienic standards and stricter biosecurity measures are suggested.Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome's importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.Pulmonary hypertension (PH) is a disease, which targets the pulmonary vasculature affecting the heart and the lungs, and is characterized by a vast array of signs and symptoms. These manifestations of PH in pregnancy are highly variable and non-specific hence, it is prudent to have a very keen and high index of suspicion while evaluating these patients. This rare disease can be extremely debilitating and can be associated with a poor overall prognosis. Pregnancy in women with PH puts them at an elevated risk because the physiological changes associated with pregnancy are not well endured leading to even higher morbidity and mortality in these patients. Although there are various modalities for evaluation and workup of PH, right heart catheterization (RHC) remains the gold standard. A mean pulmonary artery pressure (PAP) of more than 20 mm of Hg is considered diagnostic. It is indeed heartening to see that in the past decade many novel therapeutic modalities have emerged and along with a better understanding of the disease process have proved to be promising in terms of reducing the adverse outcomes and preventing death in this population of patients.
Liver fibrosis, as a common and refractory disease, is challenging to treat due to the lack of effective agents worldwide. Recently, we have developed a novel compound, N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamide) benzamide (IMB16-4), which is expected to have good potential effects against liver fibrosis. However, IMB16-4 is water-insoluble and has very low bioavailability.
Mesoporous silica nanoparticles (MSNs) were selected as drug carriers for the purpose of increasing the dissolution of IMB16-4, as well as improving its oral bioavailability and inhibiting liver fibrosis. The physical states of IMB16-4 and IMB16-4-MSNs were investigated using nitrogen adsorption, thermogravimetric analysis (TGA), HPLC, UV-Vis, X-ray diffraction (XRD) and differential scanning calorimetry (DSC).
The results show that MSNs enhanced the dissolution rate of IMB16-4 significantly. IMB16-4-MSNs reduced cytotoxicity at high concentrations of IMB16-4 on human hepatic stellate cells LX-2 cells and improved oral bioavailability up to 530% compared with raw IMB16-4 on Sprague-Dawley (SD) rats. In addition, IMB16-4-MSNs repressed hepatic fibrogenesis by decreasing the expression of hepatic fibrogenic markers, including α-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β1) and matrix metalloproteinase-2 (MMP2) in LX-2 cells.
These results provided powerful information on the use of IMB16-4-MSNs for the treatment of liver fibrosis in the future.
These results provided powerful information on the use of IMB16-4-MSNs for the treatment of liver fibrosis in the future.Small Ruminant Lentiviruses (SRLV) are highly prevalent retroviruses with significant genetic diversity and antigenic heterogeneity that cause a progressive wasting disease of sheep called Maedi-visna. This work provides a systematic review and meta-analysis of the last 40 years (1981-2020) of scientific publications on SRLV individual and flock prevalence. Fifty-eight publications and 314 studies were included. Most articles used a single diagnostic test to estimate prevalence (77.6%), whereas articles using three or more tests were scarce (6.9%). Serological tests are more frequently used than direct methods and ELISA has progressively replaced AGID over the last decades. SRLV infection in sheep is widespread across the world, with Europe showing the highest individual prevalence (40.9%) and being the geographical area in which most studies have been performed. Africa, Asia, and North America show values between 16.7% to 21.8% at the individual level. South and Central America show the lowest individual SRLV prevalence (1.7%). There was a strong positive correlation between individual and flock prevalence (ρ = 0.728; p ≤ 0.001). Despite the global importance of small ruminants, the coverage of knowledge on SRLV prevalence is patchy and inconsistent. There is a lack of a gold standard method and a defined sampling strategy among countries and continents.Fungal genome sequencing data represent an enormous pool of information for enzyme discovery. Here, we report a new approach to identify and quantitatively compare biomass-degrading capacity and diversity of fungal genomes via integrated function-family annotation of carbohydrate-active enzymes (CAZymes) encoded by the genomes. Based on analyses of 1932 fungal genomes the most potent hotspots of fungal biomass processing CAZymes are identified and ranked according to substrate degradation capacity. The analysis is achieved by a new bioinformatics approach, Conserved Unique Peptide Patterns (CUPP), providing for CAZyme-family annotation and robust prediction of molecular function followed by conversion of the CUPP output to lists of integrated "Function;Family" (e.g., EC 3.2.1.4;GH5) enzyme observations. An EC-function found in several protein families counts as different observations. Summing up such observations allows for ranking of all analyzed genome sequenced fungal species according to richness in CAZyme function diversity and degrading capacity. Identifying fungal CAZyme hotspots provides for identification of fungal species richest in cellulolytic, xylanolytic, pectinolytic, and lignin modifying enzymes. The fungal enzyme hotspots are found in fungi having very different lifestyle, ecology, physiology and substrate/host affinity. Surprisingly, most CAZyme hotspots are found in enzymatically understudied and unexploited species. In contrast, the most well-known fungal enzyme producers, from where many industrially exploited enzymes are derived, are ranking unexpectedly low. The results contribute to elucidating the evolution of fungal substrate-digestive CAZyme profiles, ecophysiology, and habitat adaptations, and expand the knowledge base for novel and improved biomass resource utilization.Mayaro virus (MAYV) and chikungunya virus (CHIKV) are known for their arthrotropism, but accumulating evidence shows that CHIKV infections are occasionally associated with serious neurological complications. However, little is known about the capacity of MAYV to invade the central nervous system (CNS). We show that human neural progenitors (hNPCs), pericytes and astrocytes are susceptible to MAYV infection, resulting in the production of infectious viral particles. In primary astrocytes, MAYV, and to a lesser extent CHIKV, elicited a strong antiviral response, as demonstrated by an increased expression of several interferon-stimulated genes, including ISG15, MX1 and OAS2. Infection with either virus led to an enhanced expression of inflammatory chemokines, such as CCL5, CXCL10 and CXCL11, whereas MAYV induced higher levels of IL-6, IL-12 and IL-15 in these cells. Moreover, MAYV was more susceptible than CHIKV to the antiviral effects of both type I and type II interferons. Taken together, this study shows that although MAYV and CHIKV are phylogenetically related, they induce different types of antiviral responses in astrocytes. This work is the first to evaluate the potential neurotropism of MAYV and shows that brain cells and particularly astrocytes and hNPCs are permissive to MAYV, which, consequently, could lead to MAYV-induced neuropathology.The objective of this pilot study was to gather and analyze data on radon concentrations in workplaces in three buildings of Granada University (Southern Spain) constructed in different centuries. All measurements were made at basement or ground floor level under normal use conditions except for one space (mineral store), in which measurements were compared between the door closed and open. Measurements were conducted during different time periods between October 2013 and March 2019 with a Radon-Scout PLUS portable Radonmonitor. The duration of continuous recordings at different sites ranged between 42 and 1104 h. Mean accumulated radon concentrations ranged between 12 and 95 Bq/m3, below the maximal level of 300 Bq/m3 set by the World Health Organization (WHO). Relatively high values were recorded in the oldest building (15th century), which was also poorly ventilated. Ventilation appeared to be an important factor in reducing radon levels, especially in areas less exposed to radon, such as Southern Spain.The aim of this work was to develop processing methods that safeguard the quality and antimicrobial properties of H. illucens and B. mori oils. We adopted a vegetable diet for both insects leftover vegetables and fruit for H. illucens and mulberry leaves for B. mori. First, alternative techniques to obtain a good oil extraction yield from the dried biomass of H. illucens larvae were tested. Traditional pressing resulted to be the best system to maximize the oil yield and it was successfully applied to B. mori pupae. Oil quality resulted comparable to that obtained with other extraction methods described in the literature. In the case of B. mori pupae, different treatments and preservation periods were investigated to evaluate their influence on the oil composition and quality. Interestingly, agar diffusion assays demonstrated the sensitivity of Gram-positive Bacillus subtilis and Staphylococcus aureus to H. illucens and B. mori derived oils, whereas the growth of Gram-negative Pseudomonas aeruginosa and Escherichia coli was not affected. This study confirms that fat and other active compounds of the oil extracted by hot pressing could represent effective antimicrobials against bacteria, a relevant result if we consider that they are by-products of the protein extraction process in the feed industry.Genetic profiles of hepatitis C virus (HCV)-associated mixed cryoglobulinemia (MC) in Asians remain elusive. A 10-year prospective cohort study was conducted with 1043 consecutive HCV Ab-positive Taiwanese surveyed with 13 single nucleotide polymorphisms (SNPs). Of 1043, 589 (56.5%) had baseline MC, 934 (89.5%) had positive HCV RNA, 796 completed anti-HCV therapy, and 715 had sustained virological responses (SVRs). SNP associations were surveyed withgenotypic, allelic, trend, permutation and multivariate analyses. At baseline, higher male sex and MC rates were noted in HCV RNA-positive than RNA-negative patients; higher female sex and positive HCV RNA rates but lower HCV RNA levels were noted in patients with than those without MC. Baseline associations were HLA II-rs9461776 A allele, IFNL3-rs12979860 T allele, SERPINE1-rs6976053 C allele and MC with HCV RNA positivity; IFNL3-rs12979860 C allele, ARNTL-rs6486122 T allele and HCV RNA positivity with baseline MC. In SVR patients, RETN-rs1423096 C allele and SERPINE1-rs6976053 T allele were associated with 24-week and 10-year post-therapy MC, respectively. Conclusions HCV RNA, IFNL3-rs12979860 and ARNTL-rs6486122 were associated with baseline MC; RETN-rs1423096 and SERPINE1-rs6976053 were associated with short- and long-term post-therapy MC in SVR patients, respectively. Links with HCV RNA and immune-associated SNPs suggest MC an immune reaction to expel HCV.Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.Recent ethnobotanical studies have raised the hypothesis that religious affiliation can, in certain circumstances, influence the evolution of the use of wild food plants, given that it shapes kinship relations and vertical transmission of traditional/local environmental knowledge. The local population living in Jhelum District, Punjab, Pakistan comprises very diverse religious and linguistic groups. A field study about the uses of wild food plants was conducted in the district. This field survey included 120 semi-structured interviews in 27 villages, focusing on six religious groups (Sunni and Shia Muslims, Christians, Hindus, Sikhs, and Ahmadis). We documented a total of 77 wild food plants and one mushroom species which were used by the local population mainly as cooked vegetables and raw snacks. The cross-religious comparison among six groups showed a high homogeneity of use among two Muslim groups (Shias and Sunnis), while the other four religious groups showed less extensive, yet diverse uses, staying within the variety of taxa used by Islamic groups. No specific plant cultural markers (i.e., plants gathered only by one community) could be identified, although there were a limited number of group-specific uses of the shared plants. Moreover, the field study showed erosion of the knowledge among the non-Muslim groups, which were more engaged in urban occupations and possibly underwent stronger cultural adaption to a modern lifestyle. The recorded traditional knowledge could be used to guide future development programs aimed at fostering food security and the valorization of the local bio-cultural heritage.(1) Background A better understanding of COVID-19 dynamics in terms of interactions among individuals would be of paramount importance to increase the effectiveness of containment measures. Despite this, the research lacks spatiotemporal statistical and mathematical analysis based on large datasets. We describe a novel methodology to extract useful spatiotemporal information from COVID-19 pandemic data. (2) Methods We perform specific analyses based on mathematical and statistical tools, like mathematical morphology, hierarchical clustering, parametric data modeling and non-parametric statistics. These analyses are here applied to the large dataset consisting of about 19,000 COVID-19 patients in the Veneto region (Italy) during the entire Italian national lockdown. (3) Results We estimate the COVID-19 cumulative incidence spatial distribution, significantly reducing image noise. We identify four clusters of connected provinces based on the temporal evolution of the incidence. Surprisingly, while one cluster consists of three neighboring provinces, another one contains two provinces more than 210 km apart by highway. The survival function of the local spatial incidence values is modeled here by a tapered Pareto model, also used in other applied fields like seismology and economy in connection to networks. Model's parameters could be relevant to describe quantitatively the epidemic. (4) Conclusion The proposed methodology can be applied to a general situation, potentially helping to adopt strategic decisions such as the restriction of mobility and gatherings.This study aimed to explore the gender specificity of spousal concordance in the development of chronic diseases among middle-aged and older Chinese couples. Data of 3420 couples were obtained from the China Health and Retirement Longitudinal Study (CHARLS). Multivariate logistic regression was used to analyze the incidence of chronic disease development over 4 years, conditional on the spousal baseline chronic disease status; and stepwise adjusting for the couples' sociodemographic characteristics (i.e., age, education, retirement status and household income), and their individual lifestyle (i.e., smoking, drinking, exercise, social participation and BMI) all measured at baseline. The incidence of chronic diseases after 4 years of follow-up was 22.95% in the husbands (605/2636) and 24.71% in the wives (623/2521). Taking the couples' baseline sociodemographic and lifestyle covariates into account, husbands whose wife had chronic diseases at baseline showed an increased risk of developing chronic diseases over 4 years (ORadjusted = 1.24, 95%CI 1.02, 1.51), but this risk was not statistically-significant for wives (ORadjusted = 0.88, 95%CI 0.71, 1.08). Our study identified gender specificity of spousal concordance in the development of chronic diseases among middle-aged and older Chinese couples. This finding may contribute to the design of couple-based intervention for disease prevention and management for community-dwelling older adults.Herpesviral nuclear egress is a regulated process shared by all family members, ensuring the efficient cytoplasmic release of viral capsids. In the case of human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50-pUL53 heterodimer that builds hexameric lattices for capsid binding and multicomponent interaction, including NEC-associated host factors. A characteristic feature of NEC interaction is the N-terminal hook structure of pUL53 that binds to an alpha-helical groove of pUL50, thus termed as hook-into-groove interaction. This central regulatory element is essential for viral replication and shows structural-functional conservation, which has been postulated as a next-generation target of antiviral strategies. However, a solid validation of this concept has been missing. In the present study, we focused on the properties of oligomeric HCMV core NEC interaction and the antiviral activity of specifically targeted prototype inhibitors. Our data suggest the following (i) transiently expressed, variably tagged versions of HCMV NEC proteins exert hook-into-groove complexes, putatively in oligomeric assemblies that are distinguishable from heterodimers, as shown by in vitro assembly and coimmunoprecipitation approaches; (ii) this postulated oligomeric binding pattern was further supported by the use of a pUL50pUL53 fusion construct also showing a pronounced multi-interaction potency; (iii) using confocal imaging cellular NEC-associated proteins were found partly colocalized with the tagged core NECs; (iv) a small inhibitory molecule, recently identified by an in vitro binding inhibition assay, was likewise active in blocking pUL50-pUL53 oligomeric assembly and in exerting antiviral activity in HCMV-infected fibroblasts. In summary, the findings refine the previous concept of HCMV core NEC formation and nominate this drug-accessible complex as a validated antiviral drug target.The abundance of microplastics (MPs) in the atmosphere, on land, and especially in water bodies is well acknowledged. In this study, we establish an optical method based on three different techniques, namely, specular reflection to probe the medium, transmission spectroscopy measurements for the detection and identification, and a speckle pattern for monitoring the sedimentation of MPs filtrated from wastewater sludge and suspended in ethanol. We used first Raman measurements to estimate the presence and types of different MPs in wastewater sludge samples. We also used microscopy to identify the shapes of the main MPs. This allowed us to create a teaching set of samples to be characterized with our optical method. With the developed method, we clearly show that MPs from common plastics, such as polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polyethylene (PE), are present in wastewater sludge and can be identified. Additionally, the results also indicate that the density of the plastics, which influences the sedimentation, is an essential parameter to consider in optical detection of microplastics in complex natural environments. All of the methods are in good agreement, thus validating the optics-based solution.Little is known about the suite of ecological conditions under which characteristic species may continue to develop under the pressure of recent habitat deterioration. We aimed to determine the niche of three indicator species of the priority habitat Pannonic salt steppes and to find out how their vegetation composition, land use, and soil chemistry mirror the current condition of their typical habitat. A plot-based vegetation survey was conducted in degraded and in pristine (reference) inland salt steppes in East-Central Europe. We confirmed decreased habitat quality at their northern geographical limit. Most of the sites there showed a strong prevalence of generalists (e.g., Elytrigia repens) and lack of specialists, both resulting from lowered habitat extremity and inappropriate land use (abandonment). A small proportion of plots (19%) were in the same good condition as the reference vegetation in the central area. Soil analyses revealed that the studied halophytes are able to persist on desalinized soils if the land use is suitable. The occurrence of the annual Camphorosma annua (Amaranthaceae) was driven largely by abiotic stress; grazing alone is insufficient for its long-term persistence, while the perennial Artemisia santonicum (Asteraceae) and Tripolium pannonicum (Asteraceae) have higher survival chances as they are able to coexist with generalists. Overall habitat quality can be reliably determined from the analyzed ecological conditions of indicator species. The outcomes of the presented work are relevant for conservation practice and can serve as a quick tool for assessing the current stage of other grassland habitats.Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a μ2μm effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone.The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.Conjugated polymers are widely used in the development of sensors, but even though they are sensitive and robust, they typically show limited selectivity, being cross-sensitive to many substances. In turn, molecular imprinting is a method involving modification of the microstructure of the surface to incorporate cavities, whose shape matches that of the "template"-the analyte to be detected, resulting in high selectivity. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to sensors utilising molecularly imprinted polypyrrole layers and their applications, particularly regarding the detection of bioactive substances. The key approaches to depositing such layers and the most relevant types of analytes are highlighted, and the various trends in the development of this type of sensors are explored.Leishmaniasis, a chronic and persistent intracellular protozoal infection caused by many different species within the genus Leishmania, is an unfamiliar disease to most North American providers. Clinical presentations may include asymptomatic and symptomatic visceral leishmaniasis (so-called Kala-azar), as well as cutaneous or mucosal disease. Although cutaneous leishmaniasis (caused by Leishmania mexicana in the United States) is endemic in some southwest states, other causes for concern include reactivation of imported visceral leishmaniasis remotely in time from the initial infection, and the possible long-term complications of chronic inflammation from asymptomatic infection. Climate change, the identification of competent vectors and reservoirs, a highly mobile populace, significant population groups with proven exposure history, HIV, and widespread use of immunosuppressive medications and organ transplant all create the potential for increased frequency of leishmaniasis in the U.S. Together, these factors could contribute to leishmaniasis emerging as a health threat in the U.S., including the possibility of sustained autochthonous spread of newly introduced visceral disease. We summarize recent data examining the epidemiology and major risk factors for acquisition of cutaneous and visceral leishmaniasis, with a special focus on implications for the United States, as well as discuss key emerging issues affecting the management of visceral leishmaniasis.Industrial Cyber-Physical System (CPS) is an emerging approach towards value creation in modern industrial production. The development and implementation of industrial CPS in real-life production are rewarding yet challenging. This paper aims to present a concept to develop, commercialize, operate, and maintain industrial CPS which can motivate the advance of the research and the industrial practice of industrial CPS in the future. We start with defining our understanding of an industrial CPS, specifying the components and key technological aspects of the industrial CPS, as well as explaining the alignment with existing work such as Industrie 4.0 concepts, followed by several use cases of industrial CPS in practice. The roles of each component and key technological aspect are described and the differences between traditional industrial systems and industrial CPS are elaborated. The multidisciplinary nature of industrial CPS leads to challenges when developing such systems, and we present a detailed description of several major sub-challenges that are key to the long-term sustainability of industrial CPS design. Since the research of industrial CPS is still emerging, we also discuss existing approaches and novel solutions to overcome these sub-challenges. These insights will help researchers and industrial practitioners to develop and commercialize industrial CPS.Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p 0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.DNA authentication of wines is a process of verifying their authenticity by genetic identification of the main plant component. The sample preparation of experimental and commercial wines was carried out by precipitation of wine debris by centrifugation with preliminary exposure with precipitators and co-precipitators, including developed macro- and micro-volume methods applicable to white or red wines, using polyvinylpyrrolidone as a co-precipitator. Addition of 2-mercaptoethanol and proteinase K to the lysing solution made it possible to adapt the technology for DNA extraction from the precipitated wine debris. The additionally tested technique of DNA extraction from wine debris by dimethyl sulfoxide (DMSO) lysis had fewer stages and, consequently, a lower risk of contamination. The results of further testing of one of the designed primer pairs (UFGT-F1 and UFGT-R1) in conjunction with the tested methods of wine material sample preparation and nucleic acid extraction, showed the advantage in the given set of oligonucleotides over previously used ones in terms of sensitivity, specificity and reproducibility. The developing strategy for genetic identification of grape varieties and DNA authentication of wines produced from them based on direct sequencing of polymerase chain reaction (PCR) products is implemented by interpreting the detected polymorphic positions of variable Vitis vinifera L. UFGT gene locus with distribution and split into 13 UFGT gene-associated groups.The current study aimed to assess the effects of dietary alpha-ketoglutarate (AKG) supplementation to laying hens on the fatty acid (FA) profile and cholesterol levels of the egg yolk at the end of production cycle. The experiment was performed on forty-eight Bovans Brown laying hens randomly assigned to either a control group (CONT) or a group supplemented with AKG. The CONT group was fed the basal diet, and the AKG group was fed the basal diet plus 1.0% AKG from the 31st until the 60th week of age, when FA profile, fat and cholesterol content of the egg yolks were determined. No significant changes in the cholesterol and total fat content of the egg yolks were observed. However, there were positive (the decrease in n-6 FA and the increase in MUFA), and negative (decrease in PUFA and n-3 FA, increase in TI and n-6/n-3 ratio) changes in FA profile following AKG supplementation. In conclusion, it was shown that dietary AKG after a 30-week long supplementation influence FA profile in egg yolk and its nutritional value.Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.The impact of typical primary or secondary lipid oxidation (LPO) products, selected as linoleic acid 13-hydroperoxide (13-HPODE) and malondialdehyde (MDA), on the structural modification of unadsorbed or adsorbed proteins in whey protein isolate (WPI)-stabilized oil-in-water (O/W) emulsions during storage up to 48 h at 37 °C in the dark was investigated. The results showed that either 13-HPODE and MDA could lead to structural modifications of unadsorbed or adsorbed proteins with a concentration-dependent manner and time relationship, respectively. Moreover, higher levels of MDA rendered a higher degree of oxidative modifications of WPI than 13-HPODE, indicated by the higher protein carbonyl contents and N'-formyl-L-kynurenine (NFK) and lower fluorescence intensity. Additionally, adsorbed proteins were more easily oxidized by LPO products than unadsorbed proteins. Overall, our results indicated that the formation of secondary LPO products and the protein position were crucial factors to increase the degree of oxidative modifications of WPI in O/W emulsion systems.Supinoxin is a novel anticancer drug candidate targeting the Y593 phospho-p68 RNA helicase, by exhibiting antiproliferative activity and/or suppression of tumor growth. This study aimed to characterize the in vitro and in vivo pharmacokinetics of supinoxin and attempt physiologically based pharmacokinetic (PBPK) modeling in rats. Supinoxin has good permeability, comparable to that of metoprolol (high permeability compound) in Caco-2 cells, with negligible net absorptive or secretory transport observed. After an intravenous injection at a dose range of 0.5-5 mg/kg, the terminal half-life (i.e., 2.54-2.80 h), systemic clearance (i.e., 691-865 mL/h/kg), and steady state volume of distribution (i.e., 2040-3500 mL/kg) of supinoxin remained unchanged, suggesting dose-independent (i.e., dose-proportional) pharmacokinetics for the dose ranges studied. After oral administration, supinoxin showed modest absorption with an absolute oral bioavailability of 56.9-57.4%. The fecal recovery following intravenous and oral administration was 16.5% and 46.8%, respectively, whereas the urinary recoveries in both administration routes were negligible. Supinoxin was mainly eliminated via NADPH-dependent phase I metabolism (i.e., 58.5% of total clearance), while UDPGA-dependent phase II metabolism appeared negligible in the rat liver microsome. Supinoxin was most abundantly distributed in the adipose tissue, gut, and liver among the nine major tissues studied (i.e., the brain, liver, kidneys, heart, lungs, spleen, gut, muscles, and adipose tissue), and the tissue exposure profiles of supinoxin were well predicted with physiologically based pharmacokinetics.Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.The application of stilbenes in the food industry is being considered because of their biological activities. Piceatannol, pterostilbene and ε-viniferin have awakened the industry's interest. However, before they can be commercialized, we must first guarantee their safety for consumers. The present work reviews the toxicological studies performed with these stilbenes. A wide variety of studies has demonstrated their cytotoxic effects in both cancer and non-cancerous cell lines. In contrast, although DNA damage was detected by some authors, in vitro genotoxic studies on the effects of piceatannol, pterostilbene, and ε-viniferin remain scarce. None of the three reviewed substances have been evaluated using the in vitro tests required by the European Food Safety Authority (EFSA) as the first step in genotoxicity testing. We did not find any study on the toxic effects of these stilbenes in vivo. Thus, more studies are needed to confirm their safe use before they can be authorized as additive in the food industry.More than 150 million tons of synthetic plastics are produced worldwide from petrochemical-based materials, many of these plastics being used to produce single-use consumer products like food packaging. The main goal of this work was to research the production and characterization of pullulan-apple fiber biocomposite films as a new food packaging material. The optical, mechanical, and barrier properties of the developed biocomposite films were evaluated. Furthermore, the antioxidant and antibacterial activities of the biocomposite films were additionally studied. The results show that the Tensile Index and Elastic Modulus of the pullulan-apple fiber films were significantly higher (p-value less then 0.05) when compared to the pullulan films. Regarding the water vapor permeability, no significant differences (p-value less then 0.05) were observed in water vapor transmission rate (WVTR) when the apple fiber was incorporated into the biocomposite films. A significant increase (p-value less then 0.05) of water contact angle in both sides of the films was observed when the apple fiber was incorporated into pullulan, indicating an increase in the hydrophobicity of the developed biocomposite films. It is worth noting the hydrophobicity of the (rough) upper side of the pullulan-apple fiber films, which present a water contact angle of 109.75°. It was possible to verify the microbial growth inhibition around the pullulan-apple fiber films for all the tested bacteria.Leptin is an obesity-associated adipokine that is known to regulate energy metabolism and reproduction and to control appetite via the leptin receptor. Recent work has identified specific cell types other than adipocytes that harbor leptin and leptin receptor expression, particularly in cancers and tumor microenvironments, and characterized the role of this signaling axis in cancer progression. Furthermore, the prognostic significance of leptin in various types of cancer and the ability to noninvasively detect leptin levels in serum samples have attracted attention for potential clinical applications. Emerging findings have demonstrated the direct and indirect biological effects of leptin in regulating cancer proliferation, metastasis, angiogenesis and chemoresistance, warranting the exploration of the underlying molecular mechanisms to develop a novel therapeutic strategy. In this review article, we summarize and integrate transcriptome and clinical data from cancer patients together with the recent findings related to the leptin signaling axis in the aforementioned malignant phenotypes. In addition, a comprehensive analysis of leptin and leptin receptor distribution in a pancancer panel and in individual cell types of specific organs at the single-cell level is presented, identifying those sites that are prone to leptin-mediated tumorigenesis. Our results shed light on the role of leptin in cancer and provide guidance and potential directions for further research for scientists in this field.The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses.With the identification of novel antibiotics from nature being pivotal in the fight against human pathogenic bacteria, there is an urgent need for effective methodologies for expedited screening of crude extracts. Here we report the development and validation of a simple and dye-free antimicrobial assay in 96-well microplate format, for both determination of IC50 values and high-resolution inhibition profiling to allow pin-pointing of bioactive constituents directly from crude extracts. While commonly used antimicrobial assays visualize cell viability using dyes, the developed and validated assay conveniently uses OD600 measurements directly on the fermentation broth. The assay was validated with an investigation of the inhibitory activity of DMSO against Staphylococcus aureus, temperature robustness, interference by coloured crude extracts as well as inter-day reproducibility. The potential for high-resolution S. aureus growth inhibition profiling was evaluated on a crude extract of an inactive Alternaria sp.
Website:
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team