NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Ti/ZnO-MxOy compounds (Mirielle Equates to , Customer care, Further ed, Ce): combination, characterization as well as program while highly productive photocatalysts with regard to hexachlorobenzene destruction.
Implementing antimicrobial stewardship (AMS) at non-university hospitals is challenging. A quasi-experimental study was conducted to determine the impact of customised antibiotic authorisation implementation on antimicrobial consumption and clinical outcomes at three provincial hospitals in Thailand. Customised pre-authorisation of selected restricted antibiotics and post-authorisation of selected controlled antibiotics were undertaken and implemented at each hospital by the local AMS team with guidance from the AMS team at the university hospital. From January 2019-December 2020, there were 1802 selected patients (901 patients during the pre-implementation period and 901 patients during the post-implementation period). The most commonly used targeted antimicrobial was meropenem (49.61%), followed by piperacillin/tazobactam (36.46%). Comparison of the outcomes of the patients during the pre- and post-implementation periods revealed that the mean day of therapy of the targeted antimicrobials was significantly shorter during the post-implementation period (6.24 vs. 7.64 days; p < 0.001), the favourable clinical response (the improvement in all clinical and laboratory parameters at the end of antibiotic therapy) was significantly higher during the post-implementation period (72.70% vs. 68.04%; p = 0.03) and the mean length of hospital stay was significantly shorter during the post-implementation period (15.78 vs. 18.90 days; p < 0.001). In conclusion, implementation of antibiotic authorisation at provincial hospitals under experienced AMS team's guidance was feasible and useful. The study results could be a good model for the implementation of customised AMS strategies at other hospitals with limited resources.Mycoplasma genitalium is recognized as a remarkable pathogen since azithromycin-resistant strains and treatment failure have been increasingly reported. Nevertheless, international guidelines still recommend azithromycin as a first-line treatment and moxifloxacin as a second-line treatment. We performed a systematic review and meta-analysis to validate the efficacy and safety of both drugs in the initial treatment of M. genitalium. We systematically searched the EMBASE, PubMed, Scopus, Ichushi, and CINAHL databases up to December 2021. We defined efficacy as clinical and microbiologic cure, and safety as persistent diarrhea. Overall, four studies met the inclusion criteria one showed clinical cure (azithromycin treatment, n = 32; moxifloxacin treatment, n = 6), four showed microbiologic cure (n = 516; n = 99), and one showed safety (n = 63; n = 84). Moxifloxacin improved the microbiologic cure rate compared with azithromycin (odds ratio [OR] 2.79, 95% confidence interval [CI], 1.06-7.35). Clinical cure and safety did not show a significant difference between azithromycin and moxifloxacin treatments (OR 4.51, 95% CI 0.23-88.3; OR 0.63, 95% CI 0.21-1.83). Our meta-analysis showed that moxifloxacin was more effective than azithromycin at eradicating M. genitalium infections and supports its preferential use as a first-line treatment.Nanotechnology provides solutions by combining the fields of textiles and medicine to prevent infectious microbial spread. Our study aimed to evaluate the antimicrobial activity of nanofiber sheets incorporated with a well-known antibiotic, ceftriaxone. It is a third-generation antibiotic that belongs to the cephalosporin group. Different percentages (0, 5%, 10%, 15%, and 20%; based on polymer wt%) of ceftriaxone were incorporated with a polymer such as polyvinyl alcohol (PVA) via electrospinning to fabricate nanofiber sheets. The Kirby-Bauer method was used to evaluate the antimicrobial susceptibility of the nanofiber sheets using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For the characterization of the nanofiber sheets incorporated with the drug, several techniques were used, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Our results showed that the nanofiber sheets containing ceftriaxone had potential inhibitory activity against E. coli and S. aureus as they had inhibition zones of approximately 20-25 mm on Mueller-Hinton-agar-containing plates. In conclusion, our nanofiber sheets fabricated with ceftriaxone have potential inhibitory effects against bacteria and can be used as a dressing to treat wounds in hospitals and for other biomedical applications.Anaerobic microorganisms are the most abundant components of the normal human microbiota; they colonize mucous membranes such as the oral cavity and the gastrointestinal and female genital tracts, and they are common pathogens in human populations [...].In many parts of the world, antiseptic agents remain non-indicated in chronic wound care. In the current context of bacterial resistance to antibiotics and the development of new-generation antiseptic agents, wound antisepsis represents an asset for the prevention of wound infection. We aimed to evaluate four common antiseptic agents in chronic wound care complete healing. The review protocol was based on the Cochrane Handbook for Systematic Reviews of Intervention and devised in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement guidelines. Five databases and three clinical trials registries were searched from inception to 30 June 2021 without language restrictions. We included randomised trials evaluating the efficacy of antiseptic agents in chronic wound care in adults. Interventions considered were those using antiseptics for cleansing or within a dressing. Risk of bias was assessed using the bias excel tool provided by the Bristol Academy. Evidence quality was assessed using Grading of Recommendation Assessment, Development and Evaluation (GRADE) criteria. Of 838 studies, 6 were finally included, with a total of 725 patients. The included studies assessed iodine (cadexomer or povidone iodine) (n = 3), polyhexanide (n = 2), and octenidine (n = 1). Limited evidence suggested a better wound healing completion with iodine compared to saline (two randomised controlled trials (RCT), 195 patients, pooled RR 1.85 (95%CI (1.27 to 2.69)), moderate-quality evidence). There was not enough evidence to suggest a difference in wound healing using octenidine or polyhexamide. None of the antiseptic agents influenced adverse event occurrence compared to saline.Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.The Global Antimicrobial Resistance Surveillance System (GLASS) is one of the pillars of the global action plan on antimicrobial resistance launched by the World Health Organization in 2015. This study was conducted to determine the feasibility and benefits of GLASS as a component of antimicrobial stewardship strategies in three provincial hospitals in Thailand. Data on the types of bacteria isolated and their antibiotic susceptibility during January-December 2019 and January-April 2020 were retrieved from the microbiology laboratory of each participating hospital. Laboratory-based antibiograms from 2019 and GLASS-based antibiograms from 2020 were created and compared. A total of 14,877 and 3580 bacterial isolates were obtained during January-December 2019 and January-April 2020, respectively. The common bacteria isolated in both periods were Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. Hospital-acquired infection (HAI)-related bacteria were observed in 59.0%, whereas community-acquired infection (CAI)-related bacteria were observed in 41.0% of isolates. Antibiotic resistance in CAIs was high and may have been related to the misclassification of colonized bacteria as true pathogens and HAIs as CAIs. The results of this study on AMR surveillance using GLASS methodology may not be valid owing to several inadequate data collections and the problem of specimen contamination. Given these considerations, related personnel should receive additional training on the best practices in specimen collection and the management of AMR surveillance data using the GLASS approach.Antibiotic resistance is a growing concern that has prompted a renewed focus on drug discovery, stewardship, and evolutionary studies of the patterns and processes that underlie this phenomenon. A resistant strain's competitive fitness relative to its sensitive counterparts in the absence of drug can impact its spread and persistence in both clinical and community settings. In a prior study, we examined the fitness of tetracycline-resistant clones that evolved from five different Escherichia coli genotypes, which had diverged during a long-term evolution experiment. In this study, we build on that work to examine whether ampicillin-resistant mutants are also less fit in the absence of the drug than their sensitive parents, and whether the cost of resistance is constant or variable among independently derived lines. Like the tetracycline-resistant lines, the ampicillin-resistant mutants were often less fit than their sensitive parents, with significant variation in the fitness costs among the mutants. This variation was not associated with the level of resistance conferred by the mutations, nor did it vary across the different parental backgrounds. In our earlier study, some of the variation in fitness costs associated with tetracycline resistance was explained by the effects of different mutations affecting the same cellular pathway and even the same gene. In contrast, the variance among the ampicillin-resistant mutants was associated with different sets of target genes. About half of the resistant clones suffered large fitness deficits, and their mutations impacted major outer-membrane proteins or subunits of RNA polymerases. The other mutants experienced little or no fitness costs and with, one exception, they had mutations affecting other genes and functions. Our findings underscore the importance of comparative studies on the evolution of antibiotic resistance, and they highlight the nuanced processes that shape these phenotypes.
Homepage:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.