NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Increased mix meaning together with macrohaplotypes determined by long-read DNA sequencing.
Subsequently, the corresponding detection statistics and detection decision on matrix manifold are derived. Meanwhile, the corresponding signal-to-clutter ratio (SCR) is improved. Finally, the simulation experiment and real sea clutter data experiment show that the proposed method can achieve a better detection performance.In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quantum versions. As a general result, we found that the work and efficiency of the classical engine is always greater than or equal to its quantum counterpart, independent of the working substance. In the classical case, this is due to the fact that the working substance is always in thermodynamic equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic paths. We apply this analysis to the case of a two-level system, finding that the work and efficiency in both the Otto's quantum and classical cycles are identical, regardless of the working substance, and we obtain similar results for a multilevel system where a linear relationship between the spectrum of energies of the working substance and the external magnetic field is fulfilled. Finally, we show an example of a three-level system in which we compare two zones in the entropy diagram as a function of temperature and magnetic field to find which is the most efficient region when performing a thermodynamic cycle. This work provides a practical way to look for temperature and magnetic field zones in the entropy diagram that can maximize the power extracted from an Otto magnetic engine.Diabetic peripheral neuropathy (DPN) is a very common neurological disorder in diabetic patients. This study presents a new percussion-based index for predicting DPN by decomposing digital volume pulse (DVP) signals from the fingertip. In this study, 130 subjects (50 individuals 44 to 89 years of age without diabetes and 80 patients 37 to 86 years of age with type 2 diabetes) were enrolled. After baseline measurement and blood tests, 25 diabetic patients developed DPN within the following five years. After removing high-frequency noise in the original DVP signals, the decomposed DVP signals were used for percussion entropy index (PEIDVP) computation. Effects of risk factors on the incidence of DPN in diabetic patients within five years of follow-up were tested using binary logistic regression analysis, controlling for age, waist circumference, low-density lipoprotein cholesterol, and the new index. Multivariate analysis showed that patients who did not develop DPN in the five-year period had higher PEIDVP values than those with DPN, as determined by logistic regression model (PEIDVP odds ratio 0.913, 95% CI 0.850 to 0.980). This study shows that PEIDVP can be a major protective factor in relation to the studied binary outcome (i.e., DPN or not in diabetic patients five years after baseline measurement).Due to telecommunications market saturation, it is very important for telco operators to always have fresh insights into their customer's dynamics. In that regard, social network analytics and its application with graph theory can be very useful. In this paper we analyze a social network that is represented by a large telco network graph and perform clustering of its nodes by studying a broad set of metrics, e.g., node in/out degree, first and second order influence, eigenvector, authority and hub values. This paper demonstrates that it is possible to identify some important nodes in our social network (graph) that are vital regarding churn prediction. We show that if such a node leaves a monitored telco operator, customers that frequently interact with that specific node will be more prone to leave the monitored telco operator network as well; thus, by analyzing existing churn and previous call patterns, we proactively predict new customers that will probably churn. The churn prediction results are quantified by using top decile lift metrics. The proposed method is general enough to be readily adopted in any field where homophilic or friendship connections can be assumed as a potential churn driver.The portfolio optimization problem generally refers to creating an investment portfolio or asset allocation that achieves an optimal balance of expected risk and return. These portfolio returns are traditionally assumed to be continuous random variables. In An Entropy-Based Approach to Portfolio Optimization, we introduced a novel non-parametric optimization method based on Shannon entropy, called return-entropy portfolio optimization (REPO), which offers a simple and fast optimization algorithm for assets with continuous returns. Here, in this paper, we would like to extend the REPO approach to the optimization problem for assets with discrete distributed returns, such as those from a Bernoulli distribution like binary options. Under a discrete probability distribution, portfolios of binary options can be viewed as repeated short-term investments with an optimal buy/sell strategy or general betting strategy. Upon the outcome of each contract, the portfolio incurs a profit (success) or loss (failure). This is similar to a series of gambling wagers. Portfolio selection under this setting can be formulated as a new optimization problem called discrete entropic portfolio optimization (DEPO). DEPO creates optimal portfolios for discrete return assets based on expected growth rate and relative entropy. We show how a portfolio of binary options provides an ideal general setting for this kind of portfolio selection. As an example we apply DEPO to a portfolio of short-term foreign exchange currency pair binary options from the NADEX exchange platform and show how it outperforms leading Kelly criterion strategies. We also provide an additional example of a gambling application using a portfolio of sports bets over the course of an NFL season and present the advantages of DEPO over competing Kelly criterion strategies.A new hybrid transform for lossless image compression exploiting a discrete wavelet transform (DWT) and prediction is the main new contribution of this paper. Simple prediction is generally considered ineffective in conjunction with DWT but we applied it to subbands of DWT modified using reversible denoising and lifting steps (RDLSs) with step skipping. The new transform was constructed in an image-adaptive way using heuristics and entropy estimation. For a large and diverse test set consisting of 499 photographic and 247 non-photographic (screen content) images, we found that RDLS with step skipping allowed effectively combining DWT with prediction. Using prediction, we nearly doubled the JPEG 2000 compression ratio improvements that could be obtained using RDLS with step skipping. Because for some images it might be better to apply prediction instead of DWT, we proposed compression schemes with various tradeoffs, which are practical contributions of this study. Compared with unmodified JPEG 2000, one scheme improved the compression ratios of photographic and non-photographic images, on average, by 1.2% and 30.9%, respectively, at the cost of increasing the compression time by 2% and introducing only minimal modifications to JPEG 2000. Greater ratio improvements, exceeding 2% and 32%, respectively, are attainable at a greater cost.Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical, and transport properties. In this work, we introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects, which belongs to an extended CII symmetry class. Due to the interplay between drivings and nonreciprocity, rich non-Hermitian Floquet topological phases emerge in the system, with each of them characterized by a pair of even-integer topological invariants ( w 0 , w π ) ∈ 2 Z × 2 Z . Under the open boundary condition, these invariants further predict the number of zero- and π -quasienergy modes localized around the edges of the system. We finally construct a generalized version of the mean chiral displacement, which could be employed as a dynamical probe to the topological invariants of non-Hermitian Floquet phases in the CII symmetry class. Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.The purpose of this study is to evaluate the sustainable operation of rail transit system. In rail transit system, as the most important aspect of negative entropy flow, the effective strategy can offset the increasing entropy of the system and make it have the characteristics of dissipative structure, so as to realize the sustainable operation. At first, this study constructs the Pressure-State-Response (PSR) model to evaluate the sustainable operation of rail transit system. In this PSR model, "pressure" is viewed as customer requirements, which answers the reasons for such changes in rail transit system; "state" refers to the state and environment of system activities, which can be described as the challenges of coping with system pressure; "response" describes the system's actions to address the challenges posed by customer needs, namely operational strategies. Moreover, then, 13 pressure indices, five state indices and 11 response indices are summarized. In addition, based on quality function deployment erational rules", "standardization of management operation" and "rationality of passenger flow control".The classical (modulus/probability) and nonclassical (phase/current) components of molecular states are reexamined and their information contributions are summarized. The state and information continuity relations are discussed and a nonclassical character of the resultant gradient information source is emphasized. The states of noninteracting and interacting subsystems in the model donor-acceptor reactive system are compared and configurations of the mutually-closed and -open equidensity orbitals are tackled. The density matrices for subsystems in reactive complexes are used to describe the entangled molecular fragments and electron communications in donor-acceptor systems which determine the entropic multiplicity and composition of chemical bonds between reactants.Atrial fibrillation (AF) is nowadays the most common cardiac arrhythmia, being associated with an increase in cardiovascular mortality and morbidity. When AF lasts for more than seven days, it is classified as persistent AF and external interventions are required for its termination. A well-established alternative for that purpose is electrical cardioversion (ECV). While ECV is able to initially restore sinus rhythm (SR) in more than 90% of patients, rates of AF recurrence as high as 20-30% have been found after only a few weeks of follow-up. Hence, new methods for evaluating the proarrhythmic condition of a patient before the intervention can serve as efficient predictors about the high risk of early failure of ECV, thus facilitating optimal management of AF patients. Among the wide variety of predictors that have been proposed to date, those based on estimating organization of the fibrillatory (f-) waves from the surface electrocardiogram (ECG) have reported very promising results. However, the existing methods are based on traditional entropy measures, which only assess a single time scale and often are unable to fully characterize the dynamics generated by highly complex systems, such as the heart during AF.
My Website:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.