NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The function of Life-style Modifications in Complete Non-Alcoholic Junk Lean meats Ailment Remedy.
LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.Understanding differences in DNA double-strand break (DSB) repair between tumor and normal tissues would provide a rationale for developing DNA repair-targeted cancer therapy. Here, using knock-in mouse models for measuring the efficiency of two DSB repair pathways, homologous recombination (HR) and nonhomologous end-joining (NHEJ), we demonstrated that both pathways are up-regulated in hepatocellular carcinoma (HCC) compared with adjacent normal tissues due to altered expression of DNA repair factors, including PARP1 and DNA-PKcs. Surprisingly, inhibiting PARP1 with olaparib abrogated HR repair in HCC. Mechanistically, inhibiting PARP1 suppressed the clearance of nucleosomes at DNA damage sites by blocking the recruitment of ALC1 to DSB sites, thereby inhibiting RPA2 and RAD51 recruitment. Importantly, combining olaparib with NU7441, a DNA-PKcs inhibitor that blocks NHEJ in HCC, synergistically suppressed HCC growth in both mice and HCC patient-derived-xenograft models. Our results suggest the combined inhibition of both HR and NHEJ as a potential therapy for HCC.Wnt signaling plays a critical role in production and differentiation of neurons and undergoes a progressive reduction during cortical development. However, how Wnt signaling is regulated is not well understood. Here we provide evidence for an indispensable role of neddylation, a ubiquitylation-like protein modification, in inhibiting Wnt/β-catenin signaling. We show that β-catenin is neddylated; and inhibiting β-catenin neddylation increases its nuclear accumulation and Wnt/β-catenin signaling. To test this hypothesis in vivo, we mutated Nae1, an obligative subunit of the E1 for neddylation in cortical progenitors. The mutation leads to eventual reduction in radial glia progenitors (RGPs). Consequently, the production of intermediate progenitors (IPs) and neurons is reduced, and neuron migration is impaired, resulting in disorganization of the cerebral cortex. These phenotypes are similar to those of β-catenin gain-of-function mice. Finally, suppressing β-catenin expression is able to rescue deficits of Nae1 mutant mice. Together, these observations identified a mechanism to regulate Wnt/β-catenin signaling in cortical development.The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.The escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses and has a large quantal content (Qc) and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C bend initiating escape and the 2°Mn conferring weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q-type calcium channels mediating transmitter release in 1°Mns and N-type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ∼15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species.Bacterial single-stranded (ss)DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL), and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein-protein interactions with DNA-metabolizing proteins. Here we show that the Escherichia coli SSB protein forms liquid-liquid phase-separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA, and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.The electronic and topological properties of materials are derived from the interplay between crystalline symmetry and dimensionality. Simultaneously introducing "forbidden" symmetries via quasiperiodic ordering with low dimensionality into a material system promises the emergence of new physical phenomena. Here, we isolate a two-dimensional (2D) chalcogenide quasicrystal and approximant, and investigate their electronic and topological properties. The 2D layers of the materials with a composition close to Ta1.6Te, derived from a layered transition metal dichalcogenide, are isolated with standard exfoliation techniques, and investigated with electron diffraction and atomic resolution scanning transmission electron microscopy. Density functional theory calculations and symmetry analysis of the large unit cell crystalline approximant of the quasicrystal, Ta21Te13, reveal the presence of symmetry-protected nodal crossings in the quasicrystalline and approximant phases, whose presence is tunable by layer number. Our study provides a platform for the exploration of physics in quasicrystalline, low-dimensional materials and the interconnected nature of topology, dimensionality, and symmetry in electronic systems.Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPβ as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPβ in CD11c+MHCIIhi DCs, gene expression profiles of splenic C/EBPβ-/- DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c+MHCIIhiCD64+ DC compartment was also increased, suggesting that C/EBPβ deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPβ could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPβ-/- bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPβ/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPβ plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.Agrobacterium tumefaciens is the causal agent of crown gall disease. The bacterium is capable of transferring a segment of single-stranded DNA (ssDNA) into recipient cells during the transformation process, and it has been widely used as a genetic modification tool for plants and nonplant organisms. Transferred DNA (T-DNA) has been proposed to be escorted by two virulence proteins, VirD2 and VirE2, as a nucleoprotein complex (T-complex) that targets the host nucleus. However, it is not clear how such a proposed large DNA-protein complex is delivered through the host nuclear pore in a natural setting. Here, we studied the natural nuclear import of the Agrobacterium-delivered ssDNA-binding protein VirE2 inside plant cells by using a split-GFP approach with a newly constructed T-DNA-free strain. Our results demonstrate that VirE2 is targeted into the host nucleus in a VirD2- and T-DNA-dependent manner. In contrast with VirD2 that binds to plant importin α for nuclear import, VirE2 directly interacts with the host nuclear pore complex component nucleoporin CG1 to facilitate its nuclear uptake and the transformation process. Our data suggest a cooperative nuclear import model in which T-DNA is guided to the host nuclear pore by VirD2 and passes through the pore with the assistance of interactions between VirE2 and host nucleoporin CG1. We hypothesize that this large linear nucleoprotein complex (T-complex) is targeted to the nucleus by a "head" guide from the VirD2-importin interaction and into the nucleus by a lateral assistance from the VirE2-nucleoporin interaction.
To prospectively validate the CT-Valve score, a new risk score designed to identify patients with valvular heart disease at a low risk of coronary artery disease (CAD) who could benefit from multislice CT (MSCT) first instead of coronary angiography (CAG).

This was a prospective cohort study of patients referred for valve surgery in the Capital Region of Denmark and Odense University Hospital from the 1 February 2015 to the 1 February 2017. MSCT was implemented for patients with a CT-Valve score ≤7 at the referring physician's discretion. Patients with a history of CAD or chronic kidney disease were excluded. The primary outcome was the proportion of patients needing reevaluation with CAG after MSCT and risk of CAD among the patients determined to be low to intermediate risk.

In total, 1149 patients were included. The median score was 9 (IQR 3) and 339 (30%) had a score ≤7. MSCT was used for 117 patients. Of these 29 (25%) were reevaluated and 9 (7.7%) had CAD. Of the 222 patients with a score ≤7 that did not receive an MSCT, 14 (6%) had significant CAD. The estimated total cost of evaluation among patients with a score ≤7 before implementation was €132 093 compared with €79 073 after, a 40% reduction. Similarly, estimated total radiation before and after was 608 mSv and 362 mSv, a 41% reduction. Follow-up at a median of 32 months (18-48) showed no ischaemic events for patients receiving only MSCT.

The CT-Valve score is a valid method for determining risk of CAD among patients with valvular heart disease. Using a score ≤7 as a cut-off for the use of MSCT is safe and cost-effective.
The CT-Valve score is a valid method for determining risk of CAD among patients with valvular heart disease. Using a score ≤7 as a cut-off for the use of MSCT is safe and cost-effective.
Cardiac involvement with COVID-19 is increasingly being recognised. Clinical characteristics and outcomes of patients with COVID-19 complicated by secondary Takotsubo cardiomyopathy (TC) is poorly understood.

This retrospective case series was conducted between March and April 2020 at four hospitals of Steward Health Care Network of Massachusetts, USA. Seven patients out of 169 who had echocardiogram were identified to have features of TC. Demographic, clinical, laboratory, management and outcome were gathered from their electronic medical records. We also reviewed all the published cases of COVID-19 and TC in the literature to recognise their common clinical characteristics, risk factors and outcomes.

In our series of seven patients, three typical, two inverted, one biventricular and one global TC were recognised. Three were females and four were males. The mean age was 71±11 years. In-hospital death was observed in 57% of patients. Patients who belonged to the high-risk group and had high-risk echocardiographic features in our series had a 100% mortality rate.

COVID-19 complicated by TC has a high mortality rate. Early identification of patients with COVID-19 who are at higher risk for developing secondary TC is important for the prevention of complications, and thus improved outcomes.
COVID-19 complicated by TC has a high mortality rate. Early identification of patients with COVID-19 who are at higher risk for developing secondary TC is important for the prevention of complications, and thus improved outcomes.
Acute decompensated heart failure (ADHF) can occur early after transcatheter aortic valve implantation (TAVI), but the risk factors or mechanisms associated with it have not been fully determined. This hypothesis-generating study aimed to investigate the clinical indices associated with the development of ADHF within 72 hours after TAVI and to improve procedural approaches for TAVI.

In this single-centre hypothesis generating prospective observational study, we enrolled 156 consecutive patients with severe aortic stenosis who underwent TAVI between January 2016 and February 2018 at our institution. We set the primary endpoint as the new development of ADHF within 72 hours after TAVI, and clinical indices associated with it were evaluated using a multivariable logistic model. The median age of the patients was 83 (quartile range 80-86) years, 48 (30.8%) were men and the median Society of Thoracic Surgery-Predicted Risk of Mortality was 7.1 (range 5.2-10.4). Mitral stenosis (MS), defined as mean transmitral valve pressure gradient ≥5 mm Hg, was present in 15 (9.6%) patients. After TAVI, the invasive mean transaortic valve pressure gradient (mAVPG) decreased from 48 (36-66) to 7 (5-11) mm Hg, and 12 (7.7%) patients developed ADHF within 72 hours after TAVI. Multivariable logistic regression analysis showed that MS (adjusted OR, 14.227; 95% CI 2.654 to 86.698; p=0.002) and greater decreases in mAVPG (1.038; 1.003 to 1.080; p=0.044) were associated with ADHF.

MS and drastic improvement of mAVPG were associated with new development of ADHF within 72 hours after TAVI.
MS and drastic improvement of mAVPG were associated with new development of ADHF within 72 hours after TAVI.
Objective of this study was to evaluate the feasibility of the non-invasive dye dilution method to quantify shunt size related to atrial septal defects (ASD).The diagnostic accuracy of shunt size determination in ASD's has been suboptimal with common non-invasive methods. We have previously developed a cost-effective and time-effective non-invasive dye dilution method. In this method, the indocyanine green solution is injected into the antecubital vein and the appearance of the dye is detected with an earpiece densitometer.

We studied 192 patients with an ASD. Mean pulmonary blood flow/systemic blood flow (Qp/Qs) was measured with dye dilution technique and compared with following methods Fick's invasive oximetry (n=49), transoesophageal echocardiography (TEE) measuring ASD size (n=143) and cardiac MR (CMR) (n=9).For the first 49 patients, Qp/Qs was 2.05±0.70 with the Fick's invasive oximetry and 2.12±0.68 with dye dilution method with an excellent correlation between the two methods (R=0.902, p<0.001). In the second study sample, the ASD size by TEE was 15±6 mm on average, and the mean Qp/Qs 2.16±0.65 measured with dye dilution method with a good correlation between the methods (R=0.674, p<0.001). Qp/Qs measured with CMR was 1.87±0.40 resulting in a good correlation with the dye dilution method (R=0.696, p=0.037).

The dye dilution method with earpiece densitometer recording is a clinically feasible and reliable method to assess shunt size in ASDs.
The dye dilution method with earpiece densitometer recording is a clinically feasible and reliable method to assess shunt size in ASDs.
Sacubitril/valsartan is an effective treatment for heart failure with reduced ejection fraction (HFrEF) based on clinical trial data. However, little is known about its use or impact in real-world practice. The aim of this study was to describe our routine clinical experience of switching otherwise optimally treated patients with HFrEF to sacubitril/valsartan with respect to patient outcomes such as quality of life (QoL) and echocardiographic variables.

From June 2017 to May 2019, 80 consecutive stable patients with HFrEF on established and maximally tolerated guideline-directed HF therapies were initiated on sacubitril/valsartan with bimonthly uptitration. Clinical assessment, biochemistry, echocardiography and QoL were compared pretreatment and post-treatment switching. We were able to successfully switch 89% of patients from renin-angiotensin axis inhibitors to sacubitril/valsartan (71 of 80 patients). After 3 months of switch therapy, we observed clinically significant and incremental improvements in chocardiographic outcomes in optimally treated patients with HFrEF switched to sacubitril/valsartan. The data provide evidence beyond that observed in clinical trial settings of the potential benefits of sacubitril/valsartan when used as part of a multidisciplinary heart failure programme.Disseminating the practice of minimally invasive mitral surgery (mini-MVS) can be challenging, despite its original case reports a few decades ago. The penetration of this technology into clinical practice has been limited to centres of excellence, and mitral surgery in most general cardiothoracic centres remains to be conducted via sternotomy access as a first line. The process for the uptake of mini-MVS requires clearer guidance and standardisation for the processes involved in its implementation. In this statement, a consensus agreement is outlined that describes the benefits of mini-MVS, including reduced postoperative bleeding, reduced wound infection, enhanced recovery and patient satisfaction. Technical considerations require specific attention and can be introduced through simulation and/or use in conventional cases. Either endoballoon or aortic cross clamping is recommended, as well as femoral or central aortic cannulation, with the use of appropriate adjuncts and instruments. A coordinated team-based approach that encourages ownership of the programme by the team members is critical. A designated proctor is also recommended. The organisation of structured training and simulation, as well as planning the initial cases, is an important step to consider. The importance of pre-empting complications and dealing with adverse events is described, including re-exploration, conversion to sternotomy, unilateral pulmonary oedema and phrenic nerve injury. Accounting for both institutional and team considerations can effectively facilitate the introduction of a mini-MVS service. This involves simulation, team-based training, visits to specialist centres and involvement of a designated proctor to oversee the initial cases.Temperature is a major factor regulating plant growth. To reproduce at extreme temperatures, plants must develop normal reproductive organs when exposed to temperature changes. However, little is known about the underlying molecular mechanisms. Here, we identified the maize (Zea mays) mutant thermosensitive vanishing tassel1-R (tvt1-R), which lacks tassels at high (restrictive) temperatures due to shoot apical meristem (SAM) arrest, but forms normal tassels at moderate (permissive) temperatures. The critical stage for phenotypic conversion in tvt1-R mutants is V2 to V6 (Vn, where "n" is the number of leaves with collars visible). Positional cloning and allelism and complementation tests revealed that a G-to-A mutation causing a Arg277-to-His277 substitution in ZmRNRL1, a ribonucleotide reductase (RNR) large subunit (RNRL), confers the tvt1-R mutant phenotype. RNR regulates the rate of deoxyribonucleoside triphosphate (dNTP) production for DNA replication and damage repair. By expression, yeast two-hybrid, RNA sequencing, and flow cytometric analyses, we found that ZmRNRL1-tvt1-R failed to interact with all three RNR small subunits at 34°C due to the Arg277-to-His277 substitution, which could impede RNR holoenzyme (α2β2) formation, thereby decreasing the dNTP supply for DNA replication. Decreased dNTP supply may be especially severe for the SAM that requires a continuous, sufficient dNTP supply for rapid division, as demonstrated by the SAM arrest and tassel absence in tvt1-R mutants at restrictive temperatures. Our study reveals a novel mechanism of temperature-gated tassel formation in maize and provides insight into the role of RNRL in SAM maintenance.C13-apocarotenoids (norisoprenoids) are carotenoid-derived oxidation products that perform important physiological functions in plants. Although their biosynthetic pathways have been extensively studied, their metabolism including glycosylation remains poorly understood. Candidate uridine-diphosphate glycosyltransferase genes (UGTs) were selected based on their high transcript abundance in comparison with other UGTs in vegetative tissues of Nicotiana benthamiana and peppermint (Mentha × piperita), as these tissues are rich sources of apocarotenoid glucosides. Hydroxylated C13-apocarotenol substrates were produced by P450-catalyzed biotransformation and microbial/plant enzyme systems were established for the synthesis of glycosides. Natural substrates were identified by physiological aglycone libraries prepared from isolated plant glycosides. In total, we identified six UGTs that catalyze the glucosylation of C13-apocarotenols, where Glc is bound either to the cyclohexene ring or the butane side chain. MpUGT86C10 is a superior novel enzyme that catalyzes the glucosylation of allelopathic 3-hydroxy-α-damascone, 3-oxo-α-ionol, 3-oxo-7,8-dihydro-α-ionol (Blumenol C), and 3-hydroxy-7,8-dihydro-β-ionol, whereas a germination test demonstrated the higher phytotoxic potential of a norisoprenoid glucoside in comparison to its aglycone. Glycosylation of C13-apocarotenoids has several functions in plants, including increased allelopathic activity of the aglycone, facilitating exudation by roots and allowing symbiosis with arbuscular mycorrhizal fungi. The results enable in-depth analysis of the roles of glycosylated norisoprenoid allelochemicals, the physiological functions of apocarotenoids during arbuscular mycorrhizal colonization, and the associated maintenance of carotenoid homeostasis.The rapid and responsive growth of a pollen tube requires delicate coordination of membrane receptor signaling, Rho-of-Plants (ROP) GTPase activity switching, and actin cytoskeleton assembly. The tomato (Solanum lycopersicum) kinase partner protein (KPP), is a ROP guanine nucleotide exchange factor (GEF) that activates ROP GTPases and interacts with the tomato pollen receptor kinases LePRK1 and LePRK2. It remains unclear how KPP relays signals from plasma membrane-localized LePRKs to ROP switches and other cellular machineries to modulate pollen tube growth. Here, we biochemically verified KPP's activity on ROP4 and showed that KPP RNA interference transgenic pollen tubes grew slower while KPP-overexpressing pollen tubes grew faster, suggesting that KPP functions as a rheostat for speed control in LePRK2-mediated pollen tube growth. The N terminus of KPP is required for self-inhibition of its ROPGEF activity, and expression of truncated KPP lacking the N terminus caused pollen tube tip enlargement. The C-terminus of KPP is required for its interaction with LePRK1 and LePRK2, and the expression of a truncated KPP lacking the C-terminus triggered pollen tube bifurcation. Furthermore, coexpression assays showed that self-associated KPP recruited actin-nucleating Actin-Related Protein2/3 (ARP2/3) complexes to the tip membrane. Interfering with ARP2/3 activity reduced the pollen tube abnormalities caused by overexpressing KPP fragments. In conclusion, KPP plays a key role in pollen tube speed and shape control by recruiting the branched actin nucleator ARP2/3 complex and an actin bundler to the membrane-localized receptors LePRK1 and LePRK2.
Influenza A(H1N1)pdm09 viruses initially predominated during the US 2018-2019 season, with antigenically drifted influenza A(H3N2) viruses peaking later. We estimated vaccine effectiveness (VE) against laboratory-confirmed influenza-associated hospitalizations and emergency department (ED) visits among children in the New Vaccine Surveillance Network.

We tested children 6 months to 17 years with acute respiratory illness for influenza using molecular assays at 7 pediatric hospitals (ED patients <5 years at 3 sites). Vaccination status sources were parental report, state immunization information systems and/or provider records for inpatients, and parental report alone for ED patients. We estimated VE using a test-negative design, comparing odds of vaccination among children testing positive versus negative for influenza using multivariable logistic regression.

Of 1792 inpatients, 226 (13%) were influenza-positive 47% for influenza A(H3N2), 36% for A(H1N1)pdm09, 9% for A (not subtyped), and 7% for B viruses. Among 1944 ED children, 420 (22%) were influenza-positive 48% for A(H3N2), 35% for A(H1N1)pdm09, 11% for A (not subtyped), and 5% for B viruses. VE was 41% (95% confidence interval [CI], 20% to 56%) against any influenza-related hospitalizations, 41% (95% CI, 11% to 61%) for A(H3N2), and 47% (95% CI, 16% to 67%) for A(H1N1)pdm09. VE was 51% (95% CI, 38% to 62%) against any influenza-related ED visits, 39% (95% CI, 15% to 56%) against A(H3N2), and 61% (95% CI, 44% to 73%) against A(H1N1)pdm09.

The 2018-2019 influenza vaccine reduced pediatric influenza A-associated hospitalizations and ED visits by 40% to 60%, despite circulation of a drifted A(H3N2) clade.
The 2018-2019 influenza vaccine reduced pediatric influenza A-associated hospitalizations and ED visits by 40% to 60%, despite circulation of a drifted A(H3N2) clade.
Noncigarette tobacco use is increasing. In this study, we reexamined (1) parental knowledge or suspicion of their children's tobacco use and (2) associations of household tobacco-free rules with youth initiation.

Participants were youth (aged 12-17) in waves 1 to 4 (2013-2018) of the Population Assessment of Tobacco and Health Study. A pseudo cross-sectional time-series analysis (
= 23 170) was used to examine parent or guardian knowledge or suspicion of their child's tobacco use according to youth-reported use categories cigarette only, electronic cigarette only, smokeless tobacco only, noncigarette combustible only, and poly use. A longitudinal analysis among wave 1 never users (
= 8994) was used to examine rules barring tobacco inside the home and whether parents talked with youth about not using tobacco as predictors of youth tobacco initiation after 1 to 3 years. Survey-weighted multivariable models were adjusted for tobacco use risk factors.

In all waves, parents or guardians much less often knew or suspected that their children used tobacco if youth only reported use of electronic cigarettes, noncigarette combustible products, or smokeless tobacco compared with cigarettes. Youth tobacco initiation was lower when youth and parents agreed that rules prohibited all tobacco use throughout the home (1-year adjusted odds ratio 0.74; 95% confidence interval 0.59-0.94) but not when parents talked with youth about tobacco (adjusted odds ratio 1.08; 95% confidence interval 0.94-1.23).

Many parents are unaware of their children's noncigarette tobacco use. Setting expectations for tobacco-free environments appears more effective at preventing youth tobacco initiation than parents advising children not to use tobacco.
Many parents are unaware of their children's noncigarette tobacco use. Setting expectations for tobacco-free environments appears more effective at preventing youth tobacco initiation than parents advising children not to use tobacco.The same mechanisms that mediate antitumor immunity from checkpoint inhibitors (CPIs) can also lead to unintended targeting of normal tissues, characterized as immune-related adverse events (irAEs). Those with pre-existing autoimmune disease are believed to be particularly vulnerable for exacerbating underlying autoimmunity or inducing severe irAEs. We report the first case of CPI-associated reactivation of primary membranous nephropathy (MN) in a patient with pleural mesothelioma responding to immunotherapy. Due to its specificity in targeting B-lymphocytes, rituximab was used to treat primary MN with the expectation that this would not interfere with the benefits gained from T cell-mediated antitumor immunity. Rituximab was effective in treating CPI-associated reactivation of MN, and the patient was successfully rechallenged with nivolumab and maintained stable kidney function and sustained clinical antitumor effect. While exacerbation of pre-existing autoimmune diseases from CPIs is common, therapy for autoimmune reactivation can be rationally directed by an understanding of the immunosuppressive mechanism with goals of cancer treatment.During oncogenesis, tumor cells present specific carbohydrate chains that are new targets for cancer immunotherapy. Whereas these tumor-associated carbohydrates (TACA) can be targeted with antibodies and vaccination approaches, TACA including sialic acid-containing glycans are able to inhibit anticancer immune responses by engagement of immune receptors on leukocytes. A family of immune-modulating receptors are sialic acid-binding Siglec receptors that have been recently described to inhibit antitumor activity mediated by myeloid cells, natural killer cells and T cells. Other TACA-binding receptors including selectins have been linked to cancer progression. Recent studies have shown that glycan-lectin interactions can be targeted to improve cancer immunotherapy. For example, interactions between the immune checkpoint T cell immunoglobulin and mucin-domain containing-3 and the lectin galectin-9 are targeted in clinical trials. In addition, an antibody against the lectin Siglec-15 is being tested in an early clinical trial. In this review, we summarize the previous and current efforts to target TACA and to inhibit inhibitory immune receptors binding to TACA including the Siglec-sialoglycan axis.Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Clinical efficacy of T cell-based cancer immunotherapy is limited by the lack of T cell infiltration in the tumor mass, especially in solid tumors. Our group demonstrated previously that leukocyte-specific protein 1 (LSP1), an intracellular signal regulator, negatively regulates T cell infiltration in inflamed tissues.

To determine the immuno-regulatory effects of LSP1 in T cells on tumor progression, we investigated the growth of B16 melanoma in
knockout (KO) mice and T cell-specific
transgenic (Tg) mice. The immune cell subpopulation infiltrated into the tumor mass as well as the expression of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in T cells was assessed by flow cytometry and/or immunohistochemistry. Chemotactic migration was assayed with
KO and
Tg T cells. Adoptive transfer of
KO or
Tg T cells was performed in B16 melanoma-challenged
KO mice.

KO mice showed decreased growth of B16 melanoma and increased infiltration of T cells in the tumor mass, which ce, possibly by affecting migration and infiltration of T cells into the tumor and by modulating production of antitumor effector cytokines by CD8
T cells. These findings provide evidence that LSP1 can be a target to improve the efficacy of T cell-based immunotherapy.
LSP1 in T cells regulates the growth of B16 melanoma in mice, possibly by affecting migration and infiltration of T cells into the tumor and by modulating production of antitumor effector cytokines by CD8+ T cells. These findings provide evidence that LSP1 can be a target to improve the efficacy of T cell-based immunotherapy.Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
To better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (
Zr) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice.

Humanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post
Zr-pembrolizumab (10 µg, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 µg) unlabeled pembrolizumab or
Zr-IgG
control (10 µg, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1.

PET imaging and biodistribution studies showed high
Zr-pembrolizumab uptake in tissues containing human immune cells,whole-body distribution in patients.
Immunotherapy has achieved remarkable advances via a variety of strategies against tumor cells that evade immune surveillance. As important innate immune cells, macrophages play important roles in maintaining homeostasis, preventing pathogen invasion, resisting tumor cells and promoting adaptive immune response. CD47 is found to be overexpressed on tumor cells and act as a don't eat me' signal, which contributes to immune evasion. Macrophages mediated phagocytosis via blockade CD47/SIRPα (signal regulatory protein alpha) interaction was proved to induce effective antitumor immune response.

A novel peptide pep-20, specifically targeting CD47 and blocking CD47/SIRPα interaction, was identified via high-throughput phage display library bio-panning. The capability to enhance the macrophage-mediated phagocytosis activities and antitumor effects of pep-20 were investigated. The mechanism of pep-20 to induce T-cell response was explored by ex vivo analysis and confirmed via macrophage depleting strategy. The strandidates to promote macrophages-mediated phagocytosis and immune response in cancer immunotherapy.
Immune checkpoint inhibitors (ICIs) improve survival outcomes in metastatic melanoma and non-small cell lung cancer (NSCLC). Preclinical evidence suggests that overexpression of cyclo-oxygenase-2 (COX2) in tumors facilitates immune evasion through prostaglandin E2 production and that COX inhibition synergizes with ICIs to promote antitumor T-cell activation. This study investigates whether concurrent COX inhibitor (COXi) use during ICI treatment compared with ICI alone is associated with improved time-to-progression (TTP), objective response rate (ORR) and overall survival (OS) in patients with metastatic melanoma and NSCLC.

We retrospectively reviewed 90 metastatic melanoma and 37 metastatic NSCLC patients, treated with ICI between 2011 and 2019. Differences in TTP and OS by ICI+COXi versus ICI alone were compared using Kaplan-Meier and Cox regression. Interaction between ICI+COXi versus ICI alone and pretreatment neutrophil-lymphocyte ratio (NLR) was examined. Independent radiology review per Response ESimilar outcomes were found in an adjusted melanoma cohort after RECIST review.

Our study suggests that COXi use concurrently with ICI significantly associated with longer TTP and improved ORR at 6 months in patients with metastatic melanoma and NSCLC compared with ICI alone. Furthermore, COXi use appears to reverse the negative prognostic effect of a high NLR by prolonging TTP in patients with melanoma.
Our study suggests that COXi use concurrently with ICI significantly associated with longer TTP and improved ORR at 6 months in patients with metastatic melanoma and NSCLC compared with ICI alone. Furthermore, COXi use appears to reverse the negative prognostic effect of a high NLR by prolonging TTP in patients with melanoma.
Blood-based biomarkers of anti-solid tumor immune checkpoint blockade (ICB) response are lacking. We hypothesized that changes in systemic cytokine levels with the initial doses of programmed cell death protein 1 (PD-1) pathway inhibitors would correlate with clinical responses. New ultrasensitive ELISA technology enables quantitation of plasma proteins in sub-picogram-per-milliliter concentrations.

We measured plasma cytokines by ultrasensitive single-molecule array assays in patients with non-small-cell lung carcinoma before and during treatment with anti-PD-1 therapy. Association with best overall response and progression-free survival (PFS) was assessed by Kruskall-Wallis test and Kaplan-Meier plots with log-rank test, respectively.

A decrease in interleukin 6 (IL-6) levels was associated with improved PFS (n=47 patients, median PFS 11 vs 4 months, HR 0.45 (95% CI 0.23 to 0.89), p=0.04). The extent of change in IL-6 differed between best overall response categories (p=0.01) and correlated with changes in C reactive protein levels. We also explored plasma cytokine levels in relation to immune-related adverse effects and observed some correlation.

This study suggests the presence of a systemic, proteomic reflection of successful ICB outside the tumor microenvironment with plasma decreases in IL-6 and CRP.
This study suggests the presence of a systemic, proteomic reflection of successful ICB outside the tumor microenvironment with plasma decreases in IL-6 and CRP.Five patients receiving checkpoint inhibitor immunotherapy (CPI) under our care across two cancer centers over a 12-month period have subsequently developed campylobacterosis. All had received immune-suppressive treatment for CPI-related colitis in the weeks or months preceding the detection of Campylobacter infection, with negative stool cultures at presentation of CPI-related colitis. The immune-suppression required to treat CPI-related toxicity may lead to an increased risk of enteric infection within the gut. While the underlying immune and biologic mechanisms are not well understood, perturbation of the gut microbiota is an increasingly recognized factor capable of influencing CPI-mediated immune reconstitution and response to therapy. Clinicians should be aware that worsening of colitic symptoms in patients with a history of treatment for CPI-related colitis may be due to enteric infection, and not simply a relapse/deterioration of a previously treated CPI-related colitis. Judicious infectious disease evaluation is necessary for patients receiving CPIs as symptoms can mimic immune-related adverse events (irAEs). Furthermore, the benefits of immune-suppressive therapy for the treatment of presumptive irAEs must be weighed against the possible increased risk for either enteric infection or opportunistic infection. Prospective studies are required to investigate microbiome perturbations, resulting from immune-suppression, and guide future treatment of this patient cohort.The D-SPECT is a dedicated cardiac camera that incorporates a solid-state semiconductor detector. This camera differs greatly from conventional SPECT/CT systems, resulting in significant differences in patient imaging. This continuing education article focuses on the specifications of both SPECT/CT and D-SPECT systems, radiopharmaceutical dosing requirements, imaging workflows, and some disadvantages of using each camera system. When used properly, the D-SPECT system can provide high-quality cardiac images with lower doses and faster exam times than conventional SPECT/CT systems.Thyroid carcinoma has an excellent long-term outcome for locoregional disease if adequately treated, but the outcome declines sharply if distant metastatic disease is present. Axillary lymph nodal metastases are unusual in thyroid carcinoma and have a poorer outcome, as they are usually associated with aggressive histopathologies, extensive locoregional disease, and distant metastatic disease. We report 2 cases of thyroid carcinoma with axillary lymph nodal metastases and their management, and we review the literature on such cases.The treatment for differentiated thyroid cancer consists of thyroidectomy followed by radioactive iodine therapy (RIT), in which the patient remains in isolation until the dose rate of the radioactive iodine reduces to a certain limit. The present research intends to estimate the length of stay of patients who undergo RIT, with radiometry analysis performed throughout the patient's admission. Methods Information such as age, sex, weight, height, prescribed activity, volume of liquids ingested, and the use of recombinant human thyrotropin was gathered from 204 patients with differentiated thyroid cancer who underwent RIT. During the admission, the dose rate was periodically measured. The data served as variables for a multiple regression, in which the coefficients (the term coefficient in this paper is related to the multiplicative factor of each considered variable used in Eqs. 1-4) and significance of each were verified as a function of the dose rate. Results The results showed that length of stay, administered activity, volume of liquids ingested, use of recombinant human thyrotropin, and patient weight impacted significantly on the dose rate. The average effective half-life of the 131I, considering all patients, was 12.61 ± 3.28 h, and the average time for their radiologic release was 15.23 ± 5.50 h. On the basis of the results, it was possible to develop a tool to estimate a patient's length of stay and effective half-life. Conclusion The results can contribute to optimization of the radiologic protection of patients who undergo RIT, as well as allow better logistics regarding their admission, which can lead to more appropriate accommodation for the patient and a better use of resources.Respiratory motion artifacts may affect interpretation of whole-body 18F-FDG PET/CT scans, especially when lesions are localized between the liver and the lung. We report a case of a patient with breast cancer who underwent PET/CT after therapy and in whom focal 18F-FDG uptake of equivocal interpretation was observed between the liver and the pleura. A subsequent imaging acquisition of the right lateral decubitus showed that the lesion had a pleural location, thus improving the diagnostic accuracy of the PET/CT finding.Prophylactic cranial irradiation (PCI) is used to decrease the probability of developing brain metastases in patients with small cell lung cancer and has been linked to deleterious cognitive effects. Although no well-established imaging markers for these effects exist, previous studies have shown that structural and metabolic changes in the brain can be detected with MRI and PET. This study used an image processing technique called texture analysis to explore whether global changes in brain glucose metabolism could be characterized in PET images. Methods18F-FDG PET images of the brain from patients with small cell lung cancer, obtained before and after the administration of PCI, were processed using texture analysis. Texture features were compared between the pre- and post-PCI images. Results Multiple texture features demonstrated statistically significant differences before and after PCI when texture analysis was applied to the brain parenchyma as a whole. Regional differences were also seen but were not statistically significant. Conclusion Global changes in brain glucose metabolism occur after PCI and are detectable using advanced image processing techniques. These changes may reflect radiation-induced damage and thus may provide a novel method for studying radiation-induced cognitive impairment.This teaching case study illustrates a metastatic neuroendocrine neoplasm (NEN) of the parotid gland in which the histopathologic findings were discordant between the primary parotid tumor (poorly differentiated small cell neuroendocrine carcinoma) and a large hepatic metastasis (atypical carcinoid with moderately differentiation status; Ki-67, 15%-20%). The case study also illustrates the value of dual-tracer PET/CT imaging (68Ga-DOTATATE and 18F-FDG) in such a clinical setting. Minimal uptake of 68Ga-DOTATATE and high-grade uptake of 18F-FDG in the lesions indicated a poor differentiation status and helped to clarify the tumor biology, with potential implications for subsequent treatment-decision individualization in favor of chemotherapy. The findings underscore the clinical utility of dual-tracer PET/CT in making the appropriate assessment in patients with conflicting or discordant histopathologic findings at 2 sites.
Read More:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.