NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

[Magnetic resonance of the palms for your diagnosis and also follow-up involving rheumatoid arthritis].
One or more CTCs were identified in 88 of the 147 patients (59.9%) before NCT and 77 of the 134 patients (52.4%) after NCT. In the entire HER2-negative patient cohort, the initial nodal status was the most significant factor influencing RFS and OS. In TNBC, 11 patients (27.5%) achieved pCR and patients that failed to achieve pCR with ≥ 5 CTCs after NCT, showed worse RFS (HR, 10.66; 95% CI, 1.80-63.07; p = 0.009) and OS (HR, 14.00; 95% CI, 1.26-155.53; p = 0.032). The patients with residual tumor and a high number of the CTCs after NCT displayed the worse outcome. These findings could provide justification to launch a future, well designed trial with longer follow-up data to obtain regulatory approval for clinical use of the assay, especially for the ER-positive, HER2-negative breast cancer subset.Negativity bias, i.e., tendency to respond strongly to negative stimuli, can be captured via behavioural and psychophysiological responses to potential threat. A virtual environment (VE) was created at room-scale wherein participants traversed a grid of ice blocks placed 200 m above the ground. Threat was manipulated by increasing the probability of encountering ice blocks that disintegrated and led to a virtual fall. Participants interacted with the ice blocks via sensors placed on their feet. Thirty-four people were recruited for the study, who were divided into High (HN) and Low (LN) Neuroticism groups. Movement data were recorded alongside skin conductance level and facial electromyography from the corrugator supercilii and zygomaticus major. Risk-averse behaviours, such as standing on 'safe' blocks and testing blocks prior to movement, increased when threat was highest. HN individuals exhibited more risk-averse behaviour than the LN group, especially in the presence of high threat. In addition, activation of the corrugator muscle was higher for HN individuals in the period following a movement to an ice block. These findings are discussed with respect to the use of room-scale VE as a protocol for emotion induction and measuring trait differences in negativity bias within VR.RAS signaling is a promising target for colorectal cancer (CRC) therapy, and a variety of selective inhibitors have been developed. However, their use has often failed to demonstrate a significant benefit in CRC patients. Here, we used patient-derived organoids (PDOs) derived from a familial adenomatous polyposis (FAP) patient to analyze the response to chemotherapeutic agents targeting EGFR, BRAF and MEK. We found that PDOs carrying KRAS mutations were resistant to MEK inhibition, while those harboring the BRAF class 3 mutation were hypersensitive. We used a systematic approach to examine the phosphorylation of RAS effectors using reverse-phase protein array (RPPA) and found increased phosphorylation of MEK induced by binimetinib. A high basal level of ERK phosphorylation and its rebound activation after MEK inhibition were detected in KRAS-mutant PDOs. Notably, the phosphorylation of EGFR and AKT was more closely correlated with that of MEK than that of ERK. Transcriptome analysis identified MYC-mediated transcription and IFN signaling as significantly correlated gene sets in MEK inhibition. Our experiments demonstrated that RPPA analysis of PDOs, in combination with the genome and transcriptome, is a useful preclinical research platform to understand RAS signaling and provides clues for the development of chemotherapeutic strategies.Although splicing errors due to single nucleotide variants represent a common cause of monogenic disorders, only a few variants have been shown to create new splice sites in exons. Here, we report an MAP3K1 splice variant identified in two siblings with 46,XY disorder of sex development. The patients carried a maternally derived c.2254C>T variant. The variant was initially recognized as a nonsense substitution leading to nonsense-mediated mRNA decay (p.Gln752Ter); however, RT-PCR for lymphoblastoid cell lines showed that this variant created a new splice donor site and caused 39 amino acid deletion (p.Gln752_Arg790del). All transcripts from the variant allele appeared to undergo altered splicing. The two patients exhibited undermasculinized genitalia with and without hypergonadotropism. Testosterone enanthate injections and dihydrotestosterone ointment applications yielded only slight increase in their penile length. Dihydrotestosterone-induced APOD transactivation was less significant in patients' genital skin fibroblasts compared with that in control samples. This study provides an example of nonsense-associated altered splicing, in which a highly potent exonic splice site was created. Furthermore, our data, in conjunction with the previous data indicating the association between MAP3K1 and androgen receptor signaling, imply that the combination of testicular dysgenesis and androgen insensitivity may be a unique phenotype of MAP3K1 abnormalities.Recombinant thrombomodulin (rTM) has been used for treatment of sepsis-associated disseminated intravascular coagulation. Recent studies have suggested that anticoagulant therapy might dampen the protective role of immunothrombosis. We examined if rTM might worsen infectious diseases. Male Sprague-Dawley rats with jugular-vein catheterization were divided into three groups no anticoagulation; rTM pretreatment; rTM treatment at 6 h. Live methicillin-resistant Staphylococcus aureus (MRSA) was inoculated into the tail vein of rats. rTM was administered into the jugular-vein catheter before or 6 h after MRSA inoculation, while an equal volume of saline was administered in the no-anticoagulation group. Blood samples were collected from the jugular-vein catheter before, 6 h and 12 h after MRSA inoculation. Tissue samples were collected from anesthetized rats when moribund or 18 h after MRSA inoculation. The survival rate of rats in the no-anticoagulation group, rTM pretreatment group, and rTM treatment at 6-h group was 50%, 25%, and 75%, respectively. Bacterial burden in blood, lung, liver, and spleen was neither increased nor decreased in rats treated with rTM. The ratio of bacteria found in the extravascular space to those in the intravascular space was increased in rats treated with rTM although the statistical power for this was low because of the small sample size. Metabolomics analysis revealed that rTM treatment alleviated oxidative stress, as evidenced by the decrease in levels of oxidized glutathione with reference to reduced glutathione. rTM did not promote bacterial propagation but alleviated oxidative stress in our rat model of bloodstream infection with MRSA. Further large-scale studies are needed to confirm these findings.The magmatic history of the Oldest Toba Tuff (OTT), the second largest in volume after the Youngest Toba Tuff (YTT), northern Sumatra, Indonesia, was investigated using U-Pb zircon dating by LA-ICP-MS. Zircon dates obtained from surface and interior sections yielded ages of 0.84 ± 0.03 Ma and 0.97 ± 0.03 Ma, respectively. The youngest OTT zircon ages were in accordance with the 40Ar/39Ar eruption age of ~ 0.8 Ma, whereas the oldest zircon dates were ~ 1.20 Ma. Therefore, the distribution of zircon U-Pb ages is interpreted to reflect protracted zircon crystallization, suggesting that the estimated 800-2,300 km3 of OTT magma accumulated and evolved for at least 400,000 years prior to eruption. This result is comparable to the volume and timescales of YTT magmatism. The similarities of both magmatic duration and geochemistry between OTT and YTT may indicate that they are similar in size and that the caldera collapse that generated OTT might be much larger previously interpreted.
Cross-sectional.

Identify the association between secondary health conditions (SHC) and the indirect costs of traumatic spinal cord injury (SCI) based on the pre-injury and post-injury changes in employment and earnings.

Medical university in the southeastern United States (US).

A population-based cohort of 304 participants met the following eligibility criteria received treatment for acute SCI within the state, residual effects resulting from traumatic SCI, at least 1-year post injury, age between 23 and 64 years at the time of injury onset, and younger than 65 years at the time of study measurement. The indirect costs estimate was measured by the annual forgone earnings and fringe benefits calculated as the difference in the sum of earnings and benefits between before injury and after injury adjusting for inflation in 2019 US dollars. We considered seven SHC in this study bowel accidents, urine accidents, urinary tract infections, pressure sores, unintentional injury, severe pain, and depressive disorder. We used multivariate ordinary least squaresregression models to examine their relationship controlling for age, sex, race/ethnicity, marital status, years of education, injury level, and ambulatory status.

The indirect costs were significantly associated with the total number of SHC and with the individual conditions of bowel accidents, urine accidents, pressure sores, and depressive disorder after controlling for age, sex, race/ethnicity, marital status, years of education, injury level, and ambulatory status.

Preventing SHC relates to better economic consequences for individuals, their families, and society, even after accounting for differences in severity of SCI.
Preventing SHC relates to better economic consequences for individuals, their families, and society, even after accounting for differences in severity of SCI.This paper presents two methods for the efficient evaluation of the power balance in circular metasurface (MTS) antennas implementing arbitrary modulated surface impedances on a grounded dielectric slab. Both methods assume the surface current in the homogenized MTS to be known. The first technique relies on the surface current expansion with Fourier-Bessel basis functions (FBBF) and proceeds by integration of the Poynting vector on a closed surface. The second method is based on the evaluation of the residue of the electric field spectrum at the surface-wave (SW) pole, and is demonstrated by using a current expansion in Gaussian ring basis functions (GRBF). The surface current expansions can be directly obtained either by analyzing the antenna with a Method of Moments (MoM) tool for homogenized MTSs based on FBBF or GRBF, or derived by a projection process. From there, the power contributions, namely the total power delivered by the feed, the radiated power, the SW power, and the Ohmic power losses in the dielectric are computed. Several efficiency metrics are presented and discussed tapering efficiency, conversion efficiency, loss factor, and diffraction factor. Since the MTS apertures at hand are leaky-wave (LW) antennas, the designer must find a compromise between the aperture efficiency and the conversion efficiency. This requires accurate and fast computational techniques for the efficiency. The present paper demonstrates for the first time that the efficiency of MTS antenna devices can be accurately evaluated in a few minutes. The compromise that should be made during the design process between the tapering efficiency and the conversion efficiency is highlighted. The impact on the efficiency of isotropic versus anisotropic MTS, uniform versus non-uniform modulation index, is analyzed. An excellent agreement is obtained between both approaches, commercial software, and experimental data.The feedback between dyke and sill intrusions and the evolution of stresses within volcanic systems is poorly understood, despite its importance for magma transport and volcano instability. Long-lived ocean island volcanoes are crosscut by thousands of dykes, which must be accommodated through a combination of flank slip and visco-elastic deformation. Flank slip is dominant in some volcanoes (e.g., Kilauea), but how intrusions are accommodated in other volcanic systems remains unknown. Here we apply digital mapping techniques to collect > 400,000 orientation and aperture measurements from 519 sheet intrusions within Volcán Taburiente (La Palma, Canary Islands, Spain) and investigate their emplacement and accommodation. We show that vertically ascending dykes were deflected to propagate laterally as they approached the surface of the volcano, forming a radial dyke swarm, and propose a visco-elastic model for their accommodation. Our model reproduces the measured dyke-aperture distribution and predicts that stress accumulates within densely intruded regions of the volcano, blocking subsequent dykes and causing eruptive activity to migrate. These results have significant implications for the organisation of magma transport within volcanic edifices, and the evolution and stability of long-lived volcanic systems.Rare earth elements (REEs) supply is important to ensure the energy transition, e-mobility and ultimately to achieve the sustainable development goals of the United Nations. Conventional exploration techniques usually rely on substantial geological field work including dense in-situ sampling with long delays until provision of analytical results. However, this approach is limited by land accessibility, financial status, climate and public opposition. Efficient and innovative methods are required to mitigate these limitations. The use of lightweight unmanned aerial vehicles (UAVs) provides a unique opportunity to conduct rapid and non-invasive exploration even in socially sensitive areas and in relatively inaccessible locations. We employ drones with hyperspectral sensors to detect REEs at the earth's surface and thus contribute to a rapidly evolving field at the cutting edge of exploration technologies. We showcase for the first time the direct mapping of REEs with lightweight hyperspectral UAV platforms. Our solution has the advantage of quick turn-around times ( less then 1 d), low detection limits ( less then 200 ppm for Nd) and is ideally suited to support exploration campaigns. This procedure was successfully tested and validated in two areas Marinkas Quellen, Namibia, and Siilinjärvi, Finland. This strategy should invigorate the use of drones in exploration and for the monitoring of mining activities.Using uncertainty quantification techniques, we carry out a sensitivity analysis of a large number (17) of parameters used in the NCAR CAM5 cloud parameterization schemes. The LLNL PSUADE software is used to identify the most sensitive parameters by performing sensitivity analysis. Using Morris One-At-a-Time (MOAT) method, we find that the simulations of global annual mean total precipitation, convective, large-scale precipitation, cloud fractions (total, low, mid, and high), shortwave cloud forcing, longwave cloud forcing, sensible heat flux, and latent heat flux are very sensitive to the threshold-relative-humidity-for-stratiform-low-clouds ([Formula see text] and the auto-conversion-size-threshold-for-ice-to-snow [Formula see text] The seasonal and regime specific dependence of some parameters in the simulation of precipitation is also found for the global monsoons and storm track regions. Through sensitivity analysis, we find that the Somali jet strength and the tropical easterly jet associated with the south Asian summer monsoon (SASM) show a systematic dependence on [Formula see text] and [Formula see text]. The timing of the withdrawal of SASM over India shows a monotonic increase (delayed withdrawal) with an increase in [Formula see text]. Overall, we find that [Formula see text], [Formula see text], [Formula see text] and [Formula see text] are the most sensitive cloud parameters and thus are of high priority in the model tuning process, in order to reduce uncertainty in the simulation of past, present, and future climate.Transfer RNA genes (tDNAs) are essential genes that encode tRNAs in all species. To understand new functions of tDNAs, other than that of encoding tRNAs, we used ENCODE data to examine binding characteristics of transcription factors (TFs) for all tDNA regions (489 loci) in the human genome. We divided the tDNAs into three groups based on the number of TFs that bound to them. At the two extremes were tDNAs to which many TFs bound (Group 1) and those to which no TFs bound (Group 3). Several TFs involved in chromatin remodeling such as ATF3, EP300 and TBL1XR1 bound to almost all Group 1 tDNAs. Furthermore, almost all Group 1 tDNAs included DNase I hypersensitivity sites and may thus interact with other chromatin regions through their bound TFs, and they showed highly conserved synteny across tetrapods. In contrast, Group 3 tDNAs did not possess these characteristics. These data suggest the presence of a previously uncharacterized function of these tDNAs. We also examined binding of CTCF to tDNAs and their involvement in topologically associating domains (TADs) and lamina-associated domains (LADs), which suggest a new perspective on the evolution and function of tDNAs.Bacterial microcompartments (BMCs) are nanoscale proteinaceous organelles that encapsulate enzymes from the cytoplasm using an icosahedral protein shell that resembles viral capsids. Of particular interest are the carboxysomes (CBs), which sequester the CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to enhance carbon assimilation. The carboxysome shell serves as a semi-permeable barrier for passage of metabolites in and out of the carboxysome to enhance CO2 fixation. How the protein shell directs influx and efflux of molecules in an effective manner has remained elusive. Here we use molecular dynamics and umbrella sampling calculations to determine the free-energy profiles of the metabolic substrates, bicarbonate, CO2 and ribulose bisphosphate and the product 3-phosphoglycerate associated with their transition through the major carboxysome shell protein CcmK2. We elucidate the electrostatic charge-based permeability and key amino acid residues of CcmK2 functioning in mediating molecular transit through the central pore. Conformational changes of the loops forming the central pore may also be required for transit of specific metabolites. The importance of these in-silico findings is validated experimentally by site-directed mutagenesis of the key CcmK2 residue Serine 39. This study provides insight into the mechanism that mediates molecular transport through the shells of carboxysomes, applicable to other BMCs. It also offers a predictive approach to investigate and manipulate the shell permeability, with the intent of engineering BMC-based metabolic modules for new functions in synthetic biology.Cytosine methylation in genomic DNA affects gene expression, potentially causing phenotypic variation. Mungbean, an agronomically and nutritionally important legume species, is characterized by nonsynchronous pod maturity, resulting in multiple harvest which costs extra time and labor. To elucidate the epigenetic influences on synchronous pod maturity (SPM) in mungbean, we determined the genome-wide DNA methylation profiles of eight mungbean recombinant inbred lines (RILs) and their parental genotypes, and compared DNA methylation profiles between high SPM and low SPM RILs, thus revealing differentially methylated regions (DMRs). A total of 3, 18, and 28 pure DMRs, defined as regions showing no significant correlation between nucleotide sequence variation and methylation level, were identified in CpG, CHG, and CHH contexts, respectively. These DMRs were proximal to 20 genes. Among the 544 single nucleotide polymorphisms identified near the 20 genes, only one caused critical change in gene expression by early termination. Analysis of these genome-wide DNA methylation profiles suggests that epigenetic changes can influence the expression of proximal genes, regardless of nucleotide sequence variation, and that SPM is mediated through gibberellin-mediated hormone signaling pathways. These results provide insights into how epialleles contribute to phenotypic variation and improve SPM in mungbean cultivars.Green fluorescent protein (GFP) and its variants are an essential tool for visualizing functional units in biomaterials. This is achieved by the fascinating optical properties of them. Here, we report novel optical properties of enhanced GFP (EGFP), which is one of widely used engineered variants of the wild-type GFP. We study the electron-beam-induced luminescence, which is known as cathodoluminescence (CL), using the hybrid light and transmission electron microscope. Surprisingly, even from the same specimen, we observe a completely different dependences of the fluorescence and CL on the electron beam irradiation. Since light emission is normally independent of whether an electron is excited to the upper level by light or by electron beam, this difference is quite peculiar. We conclude that the electron beam irradiation causes the local generation of a new redshifted form of EGFP and CL is preferentially emitted from it. In addition, we also find that the redshifted form is rather robust to electron bombardment. These remarkable properties can be utilized for three-dimensional reconstruction without electron staining in focused ion beam/scanning electron microscopy technology and provide significant potential for simultaneously observing the functional information specified by super-resolution CL imaging and the structural information at the molecular level obtained by electron microscope.microRNAs (miRNAs) post-transcriptionally regulate the expression of targeted genes. We here systematically identify miRNAs in response to simulated microgravity based on both expressions and functional analysis in Caenorhabditis elegans. After simulated microgravity treatment, we observed that 19 miRNAs (16 down-regulated and 3 up-regulated) were dysregulated. Among these dysregulated miRNAs, let-7, mir-54, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 were required for the toxicity induction of simulated microgravity in suppressing locomotion behavior. In nematodes, alteration in expressions of let-7, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 mediated a protective response to simulated microgravity, whereas alteration in mir-54 expression mediated the toxicity induction of simulated microgravity. Moreover, among these candidate miRNAs, let-7 regulated the toxicity of simulated microgravity by targeting and suppressing SKN-1/Nrf protein. In the intestine, a signaling cascade of SKN-1/Nrf-GST-4/GST-5/GST-7 required for the control of oxidative stress was identified to act downstream of let-7 to regulate the toxicity of simulated microgravity. Our data demonstrated the crucial function of miRNAs in regulating the toxicity of simulated microgravity stress in organisms. Moreover, our results further provided an important molecular basis for epigenetic control of toxicity of simulated microgravity.While a clear operating field during endoscopy is essential for accurate diagnosis and effective surgery, fogging or biofouling of the lens can cause loss of visibility during these procedures. Conventional cleaning methods such as the use of an irrigation unit, anti-fogging surfactant, or particle-based porous coatings infused with lubricants have been used but proven insufficient to prevent loss of visibility. Herein, a mechanically robust anti-fogging and anti-biofouling endoscope lens was developed by forming a lubricant-infused directly engraved nano-/micro-structured surface (LIDENS) on the lens. This structure was directly engraved onto the lens via line-by-line ablation with a femtosecond laser. This directly engraved nano/microstructure provides LIDENS lenses with superior mechanical robustness compared to lenses with conventional particle-based coatings, enabling the maintenance of clear visibility throughout typical procedures. The LIDENS lens was chemically modified with a fluorinated self-assembled monolayer (F-SAM) followed by infusion of medical-grade perfluorocarbon lubricants. This provides the lens with high transparency (> 70%) along with superior and long-lasting repellency towards various liquids. This excellent liquid repellency was also shown to be maintained during blood dipping, spraying, and droplet condensation experiments. We believe that endoscopic lenses with the LIDENS offer excellent benefits to endoscopic surgery by securing clear visibility for stable operation.The determination of the parameters of cylindrical optical waveguides, e.g. the diameters [Formula see text] of r layers of (semi-) transparent optical fibres, can be executed by inverse evaluation of the scattering intensities that emerge under monochromatic illumination. The inverse problem can be solved by optimising the mismatch [Formula see text] between the measured and simulated scattering patterns. The global optimum corresponds to the correct parameter values. The mismatch [Formula see text] can be seen as an energy landscape as a function of the diameters. In this work, we study the structure of the energy landscape for different values of the complex refractive indices [Formula see text], for [Formula see text] and [Formula see text] layers. We find that for both values of r, depending on the values of [Formula see text], two very different types of energy landscapes exist, respectively. One type is dominated by one global minimum and the other type exhibits a multitude of local minima. From an algorithmic viewpoint, this corresponds to easy and hard phases, respectively. Our results indicate that the two phases are separated by sharp phase-transition lines and that the shape of these lines can be described by one "critical" exponent b, which depends slightly on r. Interestingly, the same exponent also describes the dependence of the number of local minima on the diameters. Thus, our findings are comparable to previous theoretical studies on easy-hard transitions in basic combinatorial optimisation or decision problems like Travelling Salesperson and Satisfiability. To our knowledge our results are the first indicating the existence of easy-hard transitions for a real-world optimisation problem of technological relevance.Why lightning sometimes has multiple discharges to ground is an unanswered question. Recently, the observation of small plasma structures on positive leaders re-ignited the search. These small plasma structures were observed as pulsing radio sources along the positive leader length and were named "needles". Needles may be the missing link in explaining why lightning flickers with multiple discharges, but this requires further confirmation. In this work we present the first optical observations of these intriguing plasma structures. Our high-speed videos show needles blinking in slow motion in a sequential mode. We show that they are formed at unsuccessful leader branches, are as bright as the lightning leaders, and report several other optical characteristics.The mutualistic relationship existing between scleractinian corals and their photosynthetic endosymbionts involves a complex integration of the metabolic pathways within the holobiont. Respiration and photosynthesis are the most important of these processes and although they have been extensively studied, our understanding of their interactions and regulatory mechanisms is still limited. In this work we performed chlorophyll-a fluorescence, oxygen exchange and time-resolved absorption spectroscopy measurements on small and thin fragments (0.3 cm2) of the coral Stylophora pistillata. We showed that the capacity of mitochondrial alternative oxidase accounted for ca. 25% of total coral respiration, and that the high-light dependent oxygen uptake, commonly present in isolated Symbiodiniaceae, was negligible. The ratio between photosystem I (PSI) and photosystem II (PSII) active centers as well as their respective electron transport rates, indicated that PSI cyclic electron flow occurred in high light in S. pistillata and in some branching and lamellar coral species freshly collected in the field. Altogether, these results show the potential of applying advanced biophysical and spectroscopic methods on small coral fragments to understand the complex mechanisms of coral photosynthesis and respiration and their responses to environmental changes.The flies of the Sarcophagidae, widespread throughout the temperate zone, are of great significance in Medicine, Veterinary science, Forensics and Entomotoxicology. Lipids are important elements of cell and organelle membranes and a source of energy for embryogenesis, metamorphosis and flight. Cuticular lipids protect from desiccation and act as recognition cues for species, nest mates and castes, and are a source of various pheromones. The free fatty acid (FFA) profile of cuticular and internal extracts of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830) larvae, pupae and adults was determined by gas chromatography-mass spectrometry (GC-MS). The larvae, pupae and adults contained FFAs from C50 to C280. The extracts differed quantitatively and qualitatively from each other C181 > C161 > C160 > C180 predominated in the cuticular and internal extracts from the larvae and adults, while 181 > C160 > C161 > C180 predominated in the pupae. The FFA profile of the cuticle varies considerably between each development stage C230 and C250 are only present in larvae, C280 in the pupal cuticle, and C121 and C183 in internal extracts from adults. The mechanisms underlying this diversity are discussed herein.Many landscape and biotic processes shape the genetic structure of populations. The genetic structure of species with parasitic stages may also depend on the life history and ecology of their host. We investigated population genetic structure of the mussel Margaritifera margaritifera in Southern Sweden, and in relation to the population size and life history of its hosts, Salmo trutta and S. salar. Mussel populations were genetically differentiated into two clusters, further subdivided into four clusters and distinct conservation units. Regardless of host species, the genetic differentiation was lower among mussel populations sustained by sea-migrating than by resident hosts, while the genetic diversity was higher in mussel populations sustained by sea-migrating than by resident hosts. Genetic diversity of mussel populations was positively related to host abundance. Mussel population size was positively related to high genetic diversity of mussels sustained by resident hosts, while low mussel population size sustained by sea-migrating hosts had a high genetic diversity. The results of our study suggest a combined influence of mussels and host fish on genetic structure of unionoid mussels. We suggest to conserve not only mussel population sizes and host fish species, but also consider host migratory/resident behaviour and abundance when designing conservation programs.Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P  less then  0.0001), plaque area (P  less then  0.0001) and plaque burden (P  less then  0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors.Commercially housed broilers frequently experience limited environmental stimulation and various health issues, compromising their welfare. Providing environmental enrichment can alleviate these problems by facilitating natural behaviour and activity. We investigated the effect of providing live black soldier fly larvae (BSFL) to broilers housed at commercial densities (33 kg/m2) on behaviour, fearfulness, health and performance. One-day-old broilers were distributed over five treatments with eight pens/treatment a control treatment without BSFL; two treatments where 5% of the daily nutrient intake was replaced with live BSFL, provided four or seven times a day; and two treatments where 10% of the daily dietary intake was replaced with live BSFL provided four times a day or in transparent, movable tubes with holes. In all BSFL treatments foraging behaviour, and thereby broiler activity, was increased. Prolonged access to live BSFL, either by providing larvae seven times a day or in tubes, caused the largest increase in activity while also decreasing the time spend in tonic immobility, indicating reduced fearfulness. Broiler final weight and health were not affected. Overall, long-term access to live BSFL seems most effective in improving broiler welfare by facilitating natural behaviour and reducing fearfulness, without hindering broiler performance and health.The primary goals of this study were to evaluate the gender- and age-related differences in homocysteine concentration in the general population of China and possible influencing factors. A total of 7872 subjects, divided into male and female groups, participated in this retrospective study. The average homocysteine level, prevalence of hyperhomocysteinemia, and independent factors affecting homocysteine concentration were analyzed. The homocysteine level was significantly higher in males than in females in each age range (aged 20-30, aged 30-40, aged 40-50, aged 50-60, aged 60-80, aged over 80) (P  less then  0.0001), and the trend did not abate with age. The homocysteine concentration first decreased and then increased, being lowest at 30-50 years of age and significantly increased after 50 years of age. Factors associated with homocysteine concentration in males were smoking status (current smokers versus ex-smokers β 0.112), estimated glomerular filtration rate (β =  - 0.192), blood urea nitrogen (β =  - 0.14), diastolic blood pressure (β =  - 0.113), free triiodothyronine (β =  - 0.091), serum potassium (β =  - 0.107) and cystatin C (β = 0.173). In females, independent factors associated with homocysteine concentration were cystatin C (β = 0.319), albumin (β = 0.227), free thyroxine (β = 0.179), age (β = 0.148), free triiodothyronine (β =  - 0.217) and serum potassium (β =  - 0.153). The homocysteine level was significantly higher in males than in females and increased markedly after 50 years of age in both groups. The independent factors associated with increased homocysteine concentration differed between males and females.Modern food systems represent complex dynamic networks vulnerable to foodborne infectious outbreaks difficult to track and control. Seasonal co-occurrences (alignment of seasonal peaks) and synchronization (similarity of seasonal patterns) of infections are noted, yet rarely explored due to their complexity and methodological limitations. We proposed a systematic approach to evaluate the co-occurrence of seasonal peaks using a combination of L-moments, seasonality characteristics such as the timing (phase) and intensity (amplitude) of peaks, and three metrics of serial, phase-phase, and phase-amplitude synchronization. We used public records on counts of nine foodborne infections abstracted from CDC's FoodNet Fast online platform for the US and ten representative states from 1996 to 2017 (264 months). Based on annualized and trend-adjusted Negative Binomial Harmonic Regression (NBHR) models augmented with the δ-method, we determined that seasonal peaks of Campylobacter, Salmonella, and Shiga toxin-producing Escherichia Coli (STEC) were tightly clustered in late-July at the national and state levels. Phase-phase synchronization was observed between Cryptosporidium and Shigella, Listeria, and Salmonella (ρ = 0.51, 0.51, 0.46; p  less then  0.04). Later peak timing of STEC was associated with greater amplitude nationally (ρ = 0.50, p = 0.02) indicating phase-amplitude synchronization. Understanding of disease seasonal synchronization is essential for developing reliable outbreak forecasts and informing stakeholders on mitigation and preventive measures.The rock contains many inclusions which produce high locked-in stress under the ground stress. In order to study the influence of locked-in stress on the mechanical properties of rocks, the rock-like materials and nitrile rubber particles are used to make a test block of the rock-like model which contains inclusions. The rubber particles will expand as the test block is heated, which creates locked-in stress in the inclusions. Uniaxial compression tests of similar model blocks with different locked-in stresses and different inclusion contents were performed by using a water bath and MTS-5T uniaxial compression testing machine. The results show that the peak strength and elastic modulus decreased with the increasement of locked-in stress and inclusion content. In the meantime, the relationship among the peak strength, the elastic modulus of the test piece, the locked-in stress and the inclusion content were obtained with the help of a mathematical fitting analysis of the quantitative formula. Furthermore, the expression and value curve of the joint impact factor are calculated. This paper evaluates the importance of the locked-in stress in the mechanical properties of the rock-like material and provide a guide for other researchers to further investigate the locked-in stress in rocks.Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p  less then  0.01), ventral tongue (30,793 vs 39,095 µm2, *p  less then  0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases.The aim of this study was to investigate the effect of high fat diet and excessive compressive mechanical force on temporomandibular joint. In vivo, a mouse model of temporomandibular joint compressive loading device was used. A high fat diet mouse model and a combined mouse model intraperitoneally treated with or without simvastatin were used in the study. The pathological changes of mandibular condylar cartilage were assessed by Safranin-O staining. The IL-1β, MMP-3, leptin expression changes in the cartilage were detected by immunohistochemistry. In vitro, the mandibular condylar chondrocytes were treated with or without L-1β and simvastatin. The mRNA expression level of matrix MMPs and leptin were assessed. Both excessive compressive mechanical force and high fat diet induced obesity caused TMJ osteoarthritis-like changes and increased expression of IL-1β, MMP-3, and leptin. These pathological changes were much more serious when the two interventions were exerted together, while simvastatin could obviously alleviate these changes. The mRNA expression of MMP-3, MMP-13, and leptin increased in the IL-1β treated chondrocytes treated with IL-1β, and decreased with simvastatin treatment. The development of temporomandibular joint pathological changes could be caused by the excessive compressive mechanical force and high fat diet induced obesity.The cell-free DNA (cfDNA) is always present in plasma, and it is biomarker of growing interest in prenatal diagnostics as well as in oncology and transplantology for therapy efficiency monitoring. But does this cfDNA have a physiological role? Here we show that cfDNA presence and clearance in plasma of healthy individuals plays an indispensable role in immune system regulation. We exposed THP1 cells to healthy individuals' plasma with (NP) and without (TP) cfDNA. In cells treated with NP, we found elevated expression of genes whose products maintain immune system homeostasis. Exposure of cells to TP triggered an innate immune response (IIR), documented particularly by elevated expression of pro-inflammatory interleukin 8. The results of mass spectrometry showed a higher abundance of proteins associated with IIR activation due to the regulation of complement cascade in cells cultivated with TP. These expression profiles provide evidence that the presence of cfDNA and its clearance in plasma of healthy individuals regulate fundamental mechanisms of the inflammation process and tissue homeostasis. The detailed understanding how neutrophil extracellular traps and their naturally occurring degradation products affect the performance of immune system is of crucial interest for future medical applications.Recently, paradoxical combinations of colistin with anti-Gram-positive bacterial agents were introduced as a treatment alternative for multidrug-resistant Acinetobacter baumannii (MDRAB) infection. We assessed the therapeutic efficacy of the colistin-linezolid combination regimen in vitro and in a murine model of Acinetobacter baumannii pneumonia. A multidrug-resistant clinical strain (MDRAB31) and an extensively drug-resistant clinical strain (XDRAB78) were used in this study. The survival rates of mice and bacterial counts in lung tissue were used to assess the effects of colistin-linezolid combination. The survival rates of colistin-linezolid combination groups significantly increased compared with colistin groups for MDRAB31 (72% versus 32%, P = 0.03) and for XDRAB78 (92% versus 68%, P = 0.031). The colistin-linezolid combination groups significantly reduced the bacterial counts in lung tissue compared with colistin groups for MDRAB31 and for XDRAB78 (P  less then  0.05). The colistin-linezolid combination had a bactericidal and synergistic effect compared with colistin alone in time-kill assay and in murine model of pneumonia. Our data demonstrated the synergistic effect of colistin-linezolid combination regimen as a treatment alternative for the severe pulmonary infection caused by MDRAB and XDRAB.The magnetic and electronic properties of the hydrogenated highly conductive zinc oxide (ZnO) microparticles were investigated by electron paramagnetic resonance (EPR) and contactless microwave (MW) conductivity techniques in the wide temperature range. The EPR spectra simulation allowed us to resolve four overlapping EPR signals in ZnO microparticles. The Lorentzian EPR line with isotropic g-factor 1.9623(5) was related to the singly ionized oxygen vacancy. Another Lorentzian line with g|| = 1.9581(5), g⊥ = 1.9562(5) was attributed to the zinc interstitial shallow donor center, while EPR signal with g|| = 1.9567(5), g⊥ = 1.9556(5) and Gaussian lineshape was assigned to the hydrogen interstitial shallow effective-mass-like donor. The EPR signal with g|| = 1.9538(5), g⊥ = 1.9556(5) and Lorentzian lineshape was tentatively attributed to the shallow donor center. The charge transport properties in ZnO microparticles have been investigated by the contactless MW conductivity technique at T = 5-296 K. Two conduction mechanisms, including ionization of electrons from the shallow donors to the conduction band and hopping conduction process, have been distinguished. The hopping conduction process follows Mott's variable-range hopping T-1/4 law at T = 10-100 K. The evaluated values of the average hopping distance (15.86 Å), and hopping energy (1.822 meV at 40 K) enable us to estimate the donor concentration in the investigated ZnO microparticles as ~ 1018 cm-3.Because inflammation in osteoarthritis (OA) is related to the Toll-like receptor 4 (TLR4) signaling cascades, TLR4 is a reasonable target for developing therapeutics for OA. Thus, we investigated whether TAP2, a peptide antagonist of TLR4, reduces the monoiodoacetate (MIA)-induced arthritic pain and cartilage degradation in rats. TLR4 expression of human OA chondrocytes and synoviocytes and the knee joint tissue of MIA-induced arthritis were evaluated. MIA-induced arthritic model using Sprague-Dawley rats (6 week-old-male) were treated with TAP2, a TLR4 antagonist, and evaluated with behavioral test, immunohistochemistry, and quantitative PCR. TLR4 was highly expressed in the knee joints of patients with OA and the MIA-induced rat model. Further, a single intraarticular injection of TAP2 (25 nmol/rat) molecules targeting TLR4 on day 7 after MIA injection dramatically attenuated pain behavior for about 3 weeks and reduced cartilage loss in the knee joints and microglial activation in the spinal dorsal horns. Likewise, the mRNA levels of TNFα and IL-1β, reactive oxygen species, and the expression of MMP13 in the knee joints of TAP2-treated rats was significantly decreased by TAP2 treatment compared with the control. Moreover, interestingly, the duration of OA pain relief by TAP2 was much longer than that of chemical TLR4 antagonists, such as C34 and M62812. In conclusion, TAP2 could effectively attenuate MIA-induced arthritis in rats by blocking TLR4 and its successive inflammatory cytokines and MMP13. Therefore, TAP2 could be a prospective therapeutic to treat patients with OA.Observational studies have found associations between urinary sodium (UNa) with obesity, body shape and composition; but the findings may be biased by residual confounding. The objective of this two-sample Mendelian randomization (MR) study was to analyze their causal associations in both sex-combined and sex-specific models. Genome-wide association studies of UNa, body mass index (BMI), BMI-adjusted waist-to-hip ratio (WHR), body fat (BF) percentage and estimated glomerular filtration rate (eGFR) were identified. We initially extracted fifty SNPs associated with UNa at significance level of 5 × 10-8, but further removed those SNPs with potential horizontal pleiotropy. Univariable and multivariable MR with adjustment for eGFR were performed. Inverse-variance weighted MR was performed as the primary analysis, with MR-Egger methods as sensitivity analysis. The potential bidirectional association between BMI and UNa was investigated. All exposure and outcomes were continuous, and the effect measure was regression coefficients (beta) and their 95% confidence intervals (95% CI). The total sample size was up to 322 154. UNa was causally associated with increased BMI in both men [eGFR-adjusted beta 0.443 (0.163-0.724)] and women [0.594 (0.333-0.855)]. UNa caused BF percentage increase in men [0.622 (0.268-0.976)] and women [0.334 (0.007-0.662)]. UNa significantly elevated BMI-adjusted WHR in men [0.321 (0.094-0.548)], but not in women [0.170 (- 0.052 to 0.391)]. Additionally, we found that BMI causally increased UNa [0.043 (0.023-0.063)]. UNa increased BMI and BF percentage. Salt intake affects male body shape by increasing BMI-adjusted WHR, but showed no effects on female body shape. The bidirectional association between BMI and UNa suggested that salt reduction measures and weight reduction measures should be implemented simultaneously to break the vicious cycle and gain more health benefits.In situ high-pressure synchrotron X-ray diffraction, Raman scattering, and complementary first-principles calculations have revealed that structural and spectroscopic properties of lithium amidoborane compound are largely determined by multiple heteropolar dihydrogen bonds. The crystal structure of the compound is stabilized by dimeric complexes, wherein molecular ions bind together by intermolecular dihydrogen bonds of unconventional type. This strong intermolecular coupling determines stable character of the crystal structure in the pressure range up to ~ 30 GPa and is spectroscopically manifested by pronounced changes related to molecular vibrations of the amino group the splitting of stretching modes, the anomalous behavior of wagging modes as well as Fermi resonance due to vibrational coupling of bending and stretching modes, significantly enhanced above 10 GPa. Unconventional nature of dihydrogen bonds is confirmed by the frequency increase, blueshift, of NH stretching modes with pressure. A role of certain hydrogen mediated interactions in the process of dehydrogenation of ammonia borane and its alkali metal derivatives is speculated. Findings presented here call for reconsideration of hydrogen release mechanism from alkali metal ammonia borane derivatives. The work makes significant contribution towards establishing the general theory of ubiquitous and versatile hydrogen mediated interactions.
Homepage:
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.