Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Diamond magnetometry is a quantum sensing method involving detection of magnetic resonances with nanoscale resolution. For instance, T1 relaxation measurements, inspired by equivalent concepts in magnetic resonance imaging (MRI), provide a signal that is equivalent to T1 in conventional MRI but in a nanoscale environment. We use nanodiamonds (between 40 and 120 nm) containing ensembles of specific defects called nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement, we pump the NV center in the ground state (using a laser at 532 nm) and observe how long the NV center can remain in this state. Here, we use this method to provide real-time measurements of free radicals when they are generated in a chemical reaction. Specifically, we focus on the photolysis of H2O2 as well as the so-called Haber-Weiss reaction. Both of these processes are important reactions in biological environments. Unlike other fluorescent probes, diamonds are able to determine spin noise from different species in real time. We also investigate different diamond probes and their ability to sense gadolinium spin labels. Although this study was performed in a clean environment, we take into account the effects of salts and proteins that are present in a biological environment. We conduct our experiments with nanodiamonds, which are compatible with intracellular measurements. We perform measurements between 0 and 108 nM, and we are able to reach detection limits down to the nanomolar range and typically find T1 times of a few 100 μs. This is an important step toward label-free nano-MRI signal quantification in biological environments.This work reports a gold nanoelectrode ensembles (Au-NEE) platform taken as a disposable electrogenerated chemiluminescence (ECL) platform with immunomagnetic microbeads for ECL immunoassays for the first time. The peak-shaped voltammograms were obtained at the Au-NEE, attributed to the total diffusional overlap. The ECL intensity at Au-NEE was 12.9 folds in the Ru(bpy)32+-tri-n-propylamine (TPA) ECL system and 19.6 folds in the luminol-H2O2 system, compared with that at the Au macroelectrode using the normalized active area of the electrodes, mainly attributed to the diffusion overlap of the Au-NEE and the edge effect of the individual gold nanodisks of the Au-NEE. The ECL immunoassay on the Au-NEE platform with magnetic microbeads for the determination of cancer biomarkers was developed. Carbohydrate antigen 19-9 (CA 19-9) was chosen as a model analyte while CA 19-9 antibody on the magnetic microbeads was taken as the capture probe, and ruthenium complex-labeled CA 19-9 antibody was used as the signal probe. A "sandwich" bioconjugates on the magnetic beads were transferred onto the ECL platform, and then the ECL measurements were performed in TPA solution. The developed method showed that the ECL peak intensity was directly in proportion to the concentration of CA 19-9 in the range from 0.5 to 20 U/mL with a limit of detection of 0.4 U/mL. This work demonstrates that the Au-NEE can be employed as a useful disposable ECL platform with the merits of cheapness, low nonspecific adsorption and practical application. The proposed approach will open a new avenue in the point-of-care test for the determination of protein biomarkers.Biosourced Pickering emulsion stabilizers with stimuli responsiveness are mostly designed for recycling and do not offer fast degradability as required for drug-delivery applications. Herein, dextran-a hydrophilic and biofriendly polysaccharide obtainable from biomass recovery-was used for the first time as a brick material for the formulation of (bio)degradable pH-sensitive Pickering emulsions. It was first modified with hydrophobic acetal moieties to provide pH-sensitive acetalated dextran. Under acidic conditions, it degrades into three biocompatible (macro)molecules dextran, ethanol, and acetone. Nanoparticles of acetalated dextran were obtained using the nanoprecipitation process and could be similarly fully hydrolyzed under acidic conditions within 6 h. Then, O/W Pickering emulsions of dodecane (model oil) and medium-chain triglyceride (biocompatible oil) were successfully stabilized using these nanoparticles. pH-induced destabilization of these Pickering emulsions (including nanoparticles degradation) took less than 24 h. Finally, neither accumulation of nanoparticles nor harmful component release happened during the process, making this stimuli-responsive vector safe and environmentally friendly.The three-dimensional configuration of dissolved organic matter (DOM) is an important factor in determining the role of DOM in natural and engineered systems, yet there is still considerable uncertainty regarding the formation and potential stability of molecular aggregates within DOM. In this paper, we describe a computational assessment of the three-dimensional configuration of DOM. Specifically, we were interested in evaluating the hypothesis that DOM forms thermodynamically stable molecular aggregates that as a result were potentially shielded from water solvent molecules. Molecular dynamics simulations of DOM model compounds carefully selected based on ultrahigh-resolution mass spectrometry data revealed that, while DOM does indeed form molecular aggregates, the large majority of molecules (especially, O-atom bearing molecules) are solvent accessible. Additionally, these computations revealed that molecular aggregates are weak and dissociate when placed in organic solvents (tetrahydrofuran, methyl tert-butyl ether). Time-dependent density functional theory calculations demonstrated long-wavelength absorbance for both model DOM chromophores and their molecular aggregates. This study has important implications for determining the origin of DOM optical properties and for enhancing our collective understanding of DOM three-dimensional structures.The enantioselective Mannich reaction of 2H-azirines with alkynyl ketones is achieved under Zn-ProPhenol catalysis, delivering various aziridines with vicinal tetrasubstituted stereocenters in high yields with excellent enantioselectivities. The bimetallic Zn-ProPhenol complexes activate both the nucleophile and the electrophile in the same chiral pocket. A unique intramolecular hydrogen bond is observed in the obtained Mannich adducts, which lowers the basicity of the product's aziridine nitrogen thus favoring enantioselective control and allowing catalyst turnover.In the ongoing efforts to discover natural cholesterol-lowering compounds, dihydrocucurbitacin B, isolated from Trichosanthes cucumeroides roots, was found to promote LDL uptake by upregulating LDLR protein in a PCSK9-dependent process. In this study, an in-depth investigation of T. cucumeroides roots afforded 27 cucurbitacins (1-27), including seven new cucurbitacins (1-7), and their structures were elucidated by spectroscopic data analyses. In order to gain insight into their structure-activity relationship, cucurbitacin derivatives (B1-11 and DB1-11) were synthesized. Evaluation of lipid-lowering activities of these cucurbitacins by an LDL uptake assay in HepG2 cells revealed that most of the compounds improved the LDL uptake rate, among which hexanorisocucurbitacin D (6) and isocucurbitacin D (21) exhibited the highest activities (rates of 2.53 and 2.47, respectively), which were comparable to that of the positive control, nagilactone B (rate of 2.07). According to a mechanistic study by Western blot analysis, compounds 6 and 21 dose-dependently increased LDLR protein levels and reduced PCSK9 protein levels, representing promising new lipid-lowering drug candidates.Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-ang fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.Real-time time-dependent density functional theory (RT-TDDFT) and ab initio molecular dynamics (AIMD) are combined to calculate non-resonant and resonant Raman scattering cross sections of periodic systems, allowing for an explicit quantum mechanical description of condensed phase systems and environmental effects. It is shown that this approach to Raman spectroscopy corresponds to a short time approximation of Heller's time-dependent formalism for the description of Raman scattering. Two ways to calculate the frequency-dependent polarizability in a periodic system are presented (1) via the modern theory of polarization (Berry phase) and (2) via the velocity representation. Both approaches are found to be equivalent for a system of liquid (S)-methyloxirane with the computational settings used. Resulting non-resonance and resonance Raman spectra from the dynamic AIMD/RT-TDDFT approach are compared to the spectra of one gas phase molecule in the harmonic approximation highlighting finite temperature and solvation effects. Using RT-TDDFT to calculate the full frequency-dependent Placzek-type polarizability within one set of simulations covers the non-resonance, near-resonance, and on-resonance regimes on equal footing, thus allowing the calculation of full Raman excitation profiles.Liquid-liquid emulsion systems are usually stabilized by additives, known as surfactants, which can be observed in various environments and applications such as oily bilgewater, water-entrained diesel fuel, oil production, food processing, cosmetics, and pharmaceuticals. One important factor that stabilizes emulsions is the lowered interfacial tension (IFT) between the fluid phases due to surfactants, inhibiting the coalescence. Many studies have investigated the surfactant transport behavior that leads to corresponding time-dependent lowering of the IFT. For example, the rate of IFT decay depends on the phase in which the surfactant is added (dispersed vs continuous) due in part to differences in the near-surface depletion depth. Other key factors, such as the viscosity ratio between the dispersed and continuous phases and Marangoni stress, will also have an impact on surfactant transport and therefore the coalescence and emulsion stability. In this feature article, the measurement techniques for dynamic IFT are first reviewed due to their importance in characterizing surfactant transport, with a specific focus on macroscale versus microscale techniques. Next, equilibrium isotherm models as well as dynamic diffusion and kinetic equations are discussed to characterize the surfactant and the time scale of the surfactant transport. Furthermore, recent studies are highlighted showing the different IFT decay rates and its long-time equilibrium value depending on the phase into which the surfactant is added, particularly on the microscale. Finally, recent experiments using a hydrodynamic Stokes trap to investigate the impact of interfacial surfactant transport, or "mobility", and the phase containing the surfactant on film drainage and droplet coalescence will be presented.
My Website:
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team