Notes
![]() ![]() Notes - notes.io |
Furthermore, knockdown of COX4-1 in radioresistant GBM cells decreased CcO activity and restored radiosensitivity, whereas overexpression of COX4-1 in radiosensitive cells increased CcO activity and rendered the cells radioresistant. Overexpression of COX4-1 in radiosensitive cells also significantly reduced the cellular LIP and lipid peroxidation. Pharmacological manipulation of the cellular labile iron level using iron chelators altered CcO activity and the radiation response. Overall, these results demonstrate a mechanistic link between CcO activity and LIP in GBM radioresistance and identify the CcO subunit isoform switch from COX4-2 to COX4-1 as a novel biochemical node for adaptive radioresistance of GBM. Manipulation of CcO and the LIP may restore the sensitivity to radiation in radioresistant GBM cells and thereby provide a strategy to improve therapeutic outcome in patients with GBM.Anti-vascular endothelial growth factor (Anti-VEGF) agents are the standard of care for diabetic macular edema (CI-DME) with vision loss. They are commonly administered using several treatment protocols, including fixed, pro re nata (PRN) and treat-and-extend (T&E) regimens. Because of the lack of evidence defining an ideal treatment paradigm, we systematically compared T&E with fixed or PRN regimens. Visual acuity improvement was similar when comparing T&E to fixed or PRN dosing at 12 and 24 months. Regarding anatomic outcomes, no significant difference was found between T&E and fixed regimens for central retinal thickness or central subfoveal thickness at 12 and 24 months. Similarly, no significant difference was found for central retinal thickness at 12 months for T&E versus PRN regimen. Regarding total number of injections, no significant difference existed between T&E versus fixed regimens at 12 months. PRN regimens delivered fewer injections compared to T&E regimens at 12 months. The results of this analysis support that visual acuity and anatomic outcomes at 12 and 24 months are similar between T&E with either fixed or PRN regimens. More head-to-head trials comparing T&E versus fixed and PRN dosing are needed to provide visual and functional outcome data beyond year 2. PROSPERO Registration CRD42021249362.The development of photoelectrochemical systems for converting CO2 into chemical feedstocks offers an attractive strategy for clean energy storage by directly utilizing solar energy, but selectivity and stability for these systems have thus been limited. Here, we interface silicon nanowire (SiNW) photocathodes with a copper nanoparticle (CuNP) ensemble to drive efficient photoelectrochemical CO2 conversion to multicarbon products. This integrated system enables CO2-to-C2H4 conversion with faradaic efficiency approaching 25% and partial current densities above 2.5 mA/cm2 at -0.50 V vs RHE, while the nanowire photocathodes deliver 350 mV of photovoltage under 1 sun illumination. Under 50 h of continual bias and illumination, CuNP/SiNW can sustain stable photoelectrochemical CO2 reduction. These results demonstrate the nanowire/catalyst system as a powerful modular platform to achieve stable photoelectrochemical CO2 reduction and the feasibility to facilitate complex reactions toward multicarbons using generated photocarriers.
The purpose of this project was to assess subjective and objective benefit provided by several direct-to-consumer hearing devices for middle-aged adults. The primary goal of this study was to determine the extent to which this type of device can yield benefit when users are listening in a range of acoustic conditions, rather than to compare benefit among devices.
Participants (
= 58 years,
= 40) completed a speech perception task with and without one of four direct-to-consumer devices. Stimuli were presented with three types of maskers (steady-state noise, modulated noise, and competing talkers) at two different signal-to-noise ratios and two target levels. Participants also rated the effort required to complete the task with and without the devices and completed a short questionnaire about device comfort and perceived effectiveness.
The amount of objective benefit (in terms of speech recognition accuracy) varied among the four products, with two of the four devices yielding statistically signifs not related to degree of hearing loss in this sample of participants.We report a Ni-MOF (nickel metal-organic framework), Ni-SIP-BPY, synthesized by using two linkers 5-sulfoisophthalic acid (SIP) and 4,4'-bipyridine (BPY) simultaneously. It displays an orthorhombic crystal system with the Ama2 space group a = 31.425 Å, b = 19.524 Å, c = 11.2074 Å, α = 90°, β = 90°, γ = 90°, and two different types of nickel(II) centers. Interestingly, Ni-SIP-BPY exhibits excellent sensitivity (limit of detection, 87 ppb) and selectivity toward the 2,4,6-trinitrophenol (TNP)-like mutagenic environmental toxin in the pool of its other congeners via "turn-off" fluorescence response by the synergism of resonance energy transfer, photoinduced electron transfer, intermolecular charge transfer, π-π interactions, and competitive absorption processes. Experimental studies along with corroborated theoretical experimentation, vide density functional theory studies, shed light on determining the plausible mechanistic pathway in selective TNP detection, which is highly beneficial in the context of homeland security perspective. Along with the sensing of nitroaromatic explosives, the moderately low band gap and the p-type semiconducting behavior of Ni-SIP-BPY make it suitable as a photoanode material for visible-light-driven water splitting. Highly active surface functionalities and sufficient conduction band minima effectively reduce the water and result in a seven times higher photocurrent density under visible-light illumination.Extending the operation wavelength of silicon photonics to the mid-infrared (mid-IR) band will significantly benefit critical application areas, including health care, astronomy, and chemical sensing. However, a major hurdle for mid-IR silicon photonics has been the lack of high-speed, high-responsivity, and low noise-equivalent power (NEP) photodetectors. Here, we demonstrate a van der Waals (vdW) heterostructure mid-IR photodetector integrated on a silicon-on-insulator (SOI) waveguide. The detector is composed of vertically stacked black phosphorus (BP)/molybdenum ditelluride (MoTe2). We measured high responsivity (up to 0.85 A/W) over a 3-4 μm spectral range, indicating that waveguide-confined light could strongly interact with vdW heterostructures on top. In addition, the waveguide-integrated detector could be modulated at high speed (>10 MHz) and its switching performance shows excellent stability. These results, together with the noise analysis, indicate that the NEP of the detector is as low as 8.2 pW/Hz1/2. This reported critical missing piece in the silicon photonic toolbox will enable the wide-spread adoption of mid-IR integrated photonic circuits.Benzophenones are widely used in industry and commonly added in many personal care products. However, the neurotoxicity, in particular neurodevelopmental toxicity, of benzophenone family chemicals and metabolites has not been fully elucidated. Our recent mechanistic study in mice showed that early life exposure to a major benzophenone metabolite, 4-hydroxybenzophenone (4HBP), disrupted endoplasmic reticulum (ER) proteostasis and evoked inflammatory response in hippocampal neural stem cells (NSCs), leading to cognitive dysfunction. Despite so, detailed inflammatory cytokine(s) that possibly mediate this toxicity remains to be defined and validated. In this study, we confirmed that 4HBP treatment inhibited the viability and sphere growth of mouse NSCs in vitro. Importantly, re-interrogation of the transcriptomic data of NSCs treated with 4HBP identified the top upregulated genes, wherein the chemokine Cxcl1 ranked first. Immunofluorescent staining and qRT-PCR validated the robust induction of Cxcl1 on the protein and mRNA levels upon 4HBP treatment. Furthermore, siRNA-mediated knockdown of Cxcl1 transiently blocked its expression and led to enhanced NSCs viability in the presence of 4HBP. Together, these in vitro results indicated that the adverse effect of benzophenones on NSCs is mediated, at least in part, by induction of the chemokine Cxcl1.The aim of the present study is to discover a bacterial pigment providing protection and prevention of neurological damage and cancer development, which can have a role as a non-synthetic food additive in the food industry as well as an active drug ingredient of anticancer drugs and pharmaceuticals for neural injury. Within this scope, Serratia marcescens MB703 strain was used to produce prodigiosin. Characterization of the prodigiosin was carried out using UV-VIS, and FT-IR. In addition, its inhibitory action on AChE and antioxidant activities were determined. The cytotoxic, genotoxic and antigenotoxic activities of the prodigiosin as well as its antiproliferative activities were detected. It was determined that the maximum production of the prodigiosin (72 mg/L). The prodigiosin was found to cause no significant difference in its inhibitory effect on AChE. The prodigiosin was found effective on all antioxidant parameters tested. The IC50 values of the prodigiosin on SK-MEL-30 and HT-29 cells were calculated as 70 and 47 μM, respectively. This IC50 values of the prodigiosin showed no cytotoxic effect on L929 cells. Prodigiosin did not have genotoxic effect alone and also seem to decrease DNA damage induced by H2O2 in L929 cells. The findings of in vitro experimental studies suggest that using the prodigiosin pigment as a drug candidate for cancer and neurodegenerative disease therapy is both effective and safe.The question of how peptide chain aggregation is influenced by lipid membranes with varying shapes and structures is crucial for a detailed understanding of the neurotoxicity effect of the peptide chains. Not like the more usual spherical liposomes and planar lipid membranes, herein, we use lipid nanotubules as a model of important neuron synapse nanowire structures and devote particular attention to the effect of nanotubule fluidity on amyloid-β peptide (Aβ) chain aggregation. We apply single-molecule tracking (SMT) to elucidate how Aβ chains diffuse and aggregate on lipid nanotubules with different fluidities. The physical mechanism implies that fluidic lipid nanotubules facilitate the super-diffusion of two-dimensional (2D)-mobile precursor Aβ chains and promote their aggregation. This aggregation mechanism is retarded on less fluidic lipid nanotubules where the super-diffusion of 2D-mobile precursor Aβ chains is restricted by "frozen" lipids with less mobility. This work provides a mechanistic explanation for Aβ chain aggregation on fluidic lipid nanotubules.Sulfonolipids (SoLs) are a unique class of sphingolipids featuring a sulfonate group compared to other sphingolipids. However, the biological functions and biosynthesis of SoLs in human microbiota have been poorly understood. Here, we report the discovery and isolation of SoLs from a human opportunistic pathogen Chryseobacterium gleum DSM16776. We show for the first time the pro-inflammatory activity of SoLs with mice primary macrophages. Furthermore, we used both in vivo heterologous expression and in vitro biochemical reconstitution to characterize two enzymes, cysteate synthase and cysteate fatty acyltransferase, that are specifically involved in the biosynthesis of SoLs rather than other sphingolipids. Based on these two SoL-specific enzymes, our bioinformatics analysis showed a wider distribution of SoL biosynthetic genes in microbes that had not been reported as SoL producers. We selected four of these strains and verified their cysteate synthase and cysteate fatty acyltransferase activities in SoL biosynthesis.
My Website:
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team