NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Suboptimal Discontinuous Current-Clamp Changing Prices Lead to Deceptive Computer mouse Neuronal Firing.
Plant-mediated synthesis of nanoparticles exhibits great potential to minimize the generation of chemical waste through the utilization of non-toxic precursors. In this research work, we report the synthesis of magnesium oxide (MgO) and cobalt oxide (Co3O4) nanoparticles through a green approach using Manilkara zapota leaves extract, their surface modification by polyaniline (PANI), and antifungal properties against Aspergillus niger. Textural and structural characterization of modified and unmodified metal oxide nanoparticles were evaluated using FT-IR, SEM, and XRD. The optimal conditions for inhibition of Aspergillus niger were achieved by varying nanoparticles' concentration and time exposure. Results demonstrate that PANI/MgO nanoparticles were superior in function relative to PANI/Co3O4 nanoparticles to control the growth rate of Aspergillus niger at optimal conditions (time exposure of 72 h and nanoparticles concentration of 24 mM). A percentage decrease of 73.2% and 65.1% in fungal growth was observed using PANI/MgO and PANI/Co3O4 nanoparticles, respectively, which was higher than the unmodified metal oxide nanoparticles (67.5% and 63.2%).Intense efforts to develop alternative materials for gelatine as a drug-delivery system are progressing at a high rate. Some of the materials developed are hard capsules made from alginate, carrageenan, hypromellose and cellulose. However, there are still some disadvantages that must be minimised or eliminated for future use in drug-delivery systems. This review attempts to review the preparation and potential of seaweed-based, specifically carrageenan, hard capsules, summarise their properties and highlight their potential as an optional main component of hard capsules in a drug-delivery system. The characterisation methods reviewed were dimensional analysis, water and ash content, microbial activity, viscosity analysis, mechanical analysis, scanning electron microscopy, swelling degree analysis, gel permeation chromatography, Fourier-transform infrared spectroscopy and thermal analysis. The release kinetics of the capsule is highlighted as well. This review is expected to provide insights for new researchers developing innovative products from carrageenan-based hard capsules, which will support the development goals of the industry.Chemically and biologically safe storage of solutions for medical uses is a daily concern for industry since decades and it appeared even more dramatic during the last two years of pandemia. Biological safety is readily reached by sterilization using γ-irradiation process. However, such a type of irradiation induces the degradation and the release of chemicals able to spoil the biological solutions. Surprisingly, there are no investigations on multi-layer films combining multi-technique and multi-method approaches to unveil the events occurring during γ-irradiation. Furthermore, our investigations are focuses on properties/events occurring at product, macromolecular, and molecular levels.This study presented a green, facile and efficient approach for a new combination of targeted gold nanohybrids functionalized with folate-hydrophobic-quaternized pullulan delivering hydrophobic camptothecin (CPT-GNHs@FHQ-PUL) to enhance the efficacy, selectivity, and safety of these systems. New formulations of spherical CPT-GNHs@FHQ-PUL obtained by bio-inspired strategy were fully characterized by TEM, EDS, DLS, zeta-potential, UV-vis, XRD, and ATR-FTIR analyses, showing a homogeneous particles size with an average size of approximately 10.97 ± 2.29 nm. CPT was successfully loaded on multifunctional GNHs@FHQ-PUL via intermolecular interactions. Moreover, pH-responsive CPT release from newly formulated-CPT-GNHs@FHQ-PUL exhibited a faster release rate under acidic conditions. The intelligent CPT-GNHs@FHQ-PUL (IC50 = 6.2 μM) displayed a 2.82-time higher cytotoxicity against human lung cancer cells (Chago-k1) than CPT alone (IC50 = 2.2 μM), while simultaneously exhibiting less toxicity toward normal human lung cells (Wi-38). These systems also showed specific uptake by folate receptor-mediated endocytosis, exhibited excellent anticancer activity, induced the death of cells by increasing apoptosis pathway (13.97%), and arrested the cell cycle at the G0-G1 phase. The results of this study showed that the delivery of CPT by smart GNHs@FHQ-PUL systems proved to be a promising strategy for increasing its chemotherapeutic effects.Alternative cementitious binders, based on industrial side streams, characterized by a low carbon footprint, are profitably proposed to partially replace Portland cement. Among these alternatives, alkali-activated materials have attracted attention as a promising cementitious binder. In this paper, the chemical stability of the matrix, in fiber-reinforced slag-based alkali-activated composites, was studied, in order to assess any possible effect of the presence of the reinforcement on the chemistry of polycondensation. For this purpose, organic fiber, cellulose, and an inorganic fiber, basalt, were chosen, showing a different behavior in the alkaline media that was used to activate the slag fine powders. The novelty of the paper is the study of consolidation by means of chemical measurements, more than from the mechanical point of view. The evaluation of the chemical behavior of the starting slag in NaOH, indeed, was preparatory to the understanding of the consolidation degree in the alkali-activated composites. The reactivity of alkali-activated composites was studied in water (integrity test, normed leaching test, pH and ionic conductivity), and acids (leaching in acetic acid and HCl attack). The presence of fibers does not favor nor hinder the geopolymerization process, even if an increase in the ionic conductivity in samples containing fibers leads to the hypothesis that samples with fibers are less consolidated, or that fiber dissolution contributes to the conductivity values. The amorphous fraction was enriched in silicon after HCl attack, but the structure was not completely dissolved, and the presence of an amorphous phase is confirmed (C-S-H gel). Basalt fibers partly dissolved in the alkaline environment, leading to the formation of a C-N-A-S-H gel surrounding the fibers. In contrast, cellulose fiber remained stable in both acidic and alkaline conditions.The compatibility and coating ratio between flame retardant materials and expanded polystyrene (EPS) foam is a major impediment to achieving satisfactory flame retardant performance. In this study, we prepared a water-based intumescent flame retardant system and methylene diphenyl diisocyanate (MDI)-coated expandable polystyrene microspheres by a simple coating approach. We investigated the compatibility, coating ratio, and fire performance of EPS- and MDI-coated EPS foam using a water-based intumescent flame retardant system. The microscopic study revealed that the water-based intumescent flame retardant materials were successfully incorporated with and without MDI-coated EPS microspheres. The cone calorimeter tests (CCTs) of the MDI-coated EPS containing water-based intumescent flame retardant materials exhibited better flame retardant performance with a lower total heat release (THR) 7.3 MJ/m2, peak heat release rate (PHRR) 57.6 kW/m2, fire growth rate (FIGRA) 2027.067 W/m2.s, and total smoke production (TSP) 0.133 m2. Our results demonstrated that the MDI-coated EPS containing water-based intumescent flame retardant materials achieved flame retarding properties as per fire safety standards.Modified structure along latent tracks and track formation process have been investigated in poly (allyl diglycol carbonate), PADC, which is well recognized as a sensitive etched track detector. This knowledge is essential to develop novel detectors with improved track registration property. The track structures of protons and heavy ions (He, C, Ne, Ar, Fe, Kr and Xe) have been examined by means of FT-IR spectrometry, covering the stopping power region between 1.2 to 12,000 eV/nm. Through a set of experiments on low-LET radiations-such as gamma ray-, multi-step damage process by electron hits was confirmed in the radiation-sensitive parts of the PADC repeat-unit. From this result, we unveiled for the first-time the layered structure in tracks, in relation with the number of secondary electrons. We also proved that the etch pit was formed when at least two repeat-units were destroyed along the track radial direction. To evaluate the number of secondary electrons around the tracks, a series of numerical simulations were performed with Geant4-DNA. Therefore, we are proposing new physical criterions to describe the detection thresholds. Furthermore, we propose a present issue of the definition of detection threshold for semi-relativistic C ions. Additionally, as a possible chemical criterion, formation density of hydroxyl group is suggested to express the response of PADC.The strive for utilization of green fillers in polymer composite has increased focus on application of natural biomass-based fillers. Biochar has garnered a lot of attention as a filler material and has the potential to replace conventionally used inorganic mineral fillers. Biochar is a carbon rich product obtained from thermochemical conversion of biomass in nitrogen environment. In this review, current studies dealing with incorporation of biochar in polymer matrices as a reinforcement and conductive filler were addressed. Each study mentioned here is nuanced, while addressing the same goal of utilization of biochar as a filler. In this review paper, an in-depth analysis of biochar and its structure is presented. The paper explored the various methods employed in fabrication of the biocomposites. A thorough review on the effect of addition of biochar on the overall composite properties showed immense promise in improving the overall composite properties. An analysis of the possible knowledge gaps was also done, and improvements were suggested. Through this study we tried to present the status of application of biochar as a filler material and its potential future applications.The current work focuses on the development of a novel electrospun silk fibroin (SF) nonwoven mat as a GTR membrane with antibacterial, biomineralization and biocompatible properties. The γ-poly glutamic acid (γ-PGA)-capped nano silver fluoride (NSF) and silver diamine fluoride (SDF) were first synthesized, which were dip-coated onto electrospun silk fibroin mats (NSF-SF and SDF-SF). UV-Vis spectroscopy and TEM depicted the formation of silver nanoparticles. NSF-SF and SDF-SF demonstrated antibacterial properties (against Porphyromonas gingivalis) with 3.1 and 6.7 folds higher relative to SF, respectively. Post-mineralization in simulated body fluid, the NSF-SF effectively promoted apatite precipitation (Ca/P ~1.67), while the SDF-SF depicted deposition of silver nanoparticles, assessed by SEM-EDS. According to the FTIR-ATR deconvolution analysis, NSF-SF portrayed ~75% estimated hydroxyapatite crystallinity index (CI), whereas pure SF and SDF-SF demonstrated ~60%. The biocompatibility of NSF-SF was ~82% when compared to the control, while SDF-coated samples revealed in vitro cytotoxicity, further needing in vivo studies for a definite conclusion. Furthermore, the NSF-SF revealed the highest tensile strength of 0.32 N/mm and 1.76% elongation at break. Therefore, it is substantiated that the novel bioactive and antibacterial NSF-SF membranes can serve as a potential candidate, shedding light on further in-depth analysis for GTR applications.
My Website:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.