Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
engthening workout based on bodyweight training exercises are effective strategies to improve the health-related physical fitness in sedentary women employees.Spherical silica nanoparticles with solid cores and mesoporous shells (SCMS) were decorated with thermoresponsive polymer brushes that were shown to serve as macromolecular valves to control loading and unloading of a model dye within the mesopores. Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brushes were grafted from the surfaces of both solid core (SC) and SCMS particles of similar size using surface-initiated atom transfer radical polymerization. Both systems based on porous (SCMS-PNIPAM) and nonporous (SC-PNIPAM) particles were characterized using cryo-TEM, thermogravimetry and elemental analysis to determine the structure and composition of the decorated nanoparticles. The grafted PNIPAM brushes were found to be responsive to temperature changes enabling temperature-controlled gating of the pores. The processes of loading and unloading in the obtained systems were examined using a model fluorescent dye-rhodamine 6G. Polymer brushes in SCMS-PNIPAM systems were shown to serve as molecular valves enabling significant adsorption (loading) of the dye inside the pores with respect to the SC-PNIPAM (no pores) and SCMS (no valves) systems. The effective unloading of the fluorescent cargo molecules from the decorated nanoparticles was achieved in a water/methanol solution. The obtained SCMS-PNIPAM particles may be used as smart nanocontainers or nanoreactors offering also facile isolation from the suspension due to the presence of dense cores.Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages. Here we focus on turtles, an emerging model group with growing genomic resources. We review karyotypic changes that accompanied the evolution of chromosomal systems of genotypic sex determination (GSD) in chelonians from systems under the control of environmental temperature (TSD). These transitions gave rise to 31 GSD species identified thus far (out of 101 turtles with known sex determination), 27 with a characterized sex chromosome system (13 of those karyotypically). These sex chromosomes are varied in terms of the ancestral autosome they co-opted and thus in their homology, as well as in their size (some are macro-, some are micro-chromosomes), heterogamety (some are XX/XY, some ZZ/ZW), dimorphism (some are virtually homomorphic, some heteromorphic with larger-X, larger W, or smaller-Y), age (the oldest system could be ~195 My old and the youngest less then 25 My old). Combined, all data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others. Finally, although the study of dosage compensation and molecular divergence of turtle sex chromosomes has lagged behind research on other aspects of their evolution, this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.Despite increasing knowledge gained based on multidisciplinary research, plasma medicine still raises various questions regarding specific effects as well as potential risks. With regard to significant statements about in vivo applicability that cannot be prognosticated exclusively based on in vitro data, there is still a deficit of clinical data. This study included a clinical follow-up of five probands who had participated five years previously in a study on the influence of cold atmospheric pressure plasma (CAP) on the wound healing of CO2 laser-induced skin lesions. The follow-up included a complex imaging diagnostic involving dermatoscopy, confocal laser scanning microscopy (CLSM) and hyperspectral imaging (HSI). Hyperspectral analysis showed no relevant microcirculatory differences between plasma-treated and non-plasma-treated areas. In summary of all the findings, no malignant changes, inflammatory reactions or pathological changes in cell architecture could be detected in the plasma-treated areas. These unique in vivo long-term data contribute to a further increase in knowledge about important safety aspects in regenerative plasma medicine. However, to confirm these findings and secure indication-specific dose recommendations, further clinical studies are required.The aim of this work was to verify the correlations between different pulmonary morphological patterns and functional outcomes in sarcoidosis patients, using a validated score for the comparison between the high-resolution computed tomography (HRCT) of patients belonging to different imaging patterns. From the electronic database of the reference center for interstitial lung diseases of our University Hospital, we retrospectively selected 55 patients with a diagnosis of sarcoidosis according to the American Thoracic Society (ATS) criteria; we evaluated the initial HRCT examination and pulmonary function tests collected at baseline and after a year. Patients were divided into typical (48% of patients) and atypical (52%) HRCT patterns, and a computer tomography activity score (CTAS) was associated with each HRCT appearance detected; clinical history, impact of therapy, and extra-thoracic locations were also considered. We found that worsening of diffusing capacity for carbon monoxide (DLCO) is related to the CTAS (r = -0.20, p = 0.01), and there was an inverse correlation between the variation of forced vital capacity (FVC) and the value of the CTAS (r = -0.30, p = 0.23) in the subgroup of patients with atypical patterns. CTAS were higher in patients with extra-pulmonary localizations (p = 0.05) and the subgroup of patients with extra-thoracic locations and atypical manifestations had a greater worsening in terms of variation of FVC (p = 0.03) and DLCO% (p = 0.04). No difference between treated and untreated patients was found. The information about mtDNA methylation is still limited, thus epigenetic modification remains unclear. The lack of comprehensive information on the comparative epigenomics of mtDNA prompts comprehensive investigations of the epigenomic modification of mtDNA in different species. This is the first study in which the theoretical CpG localization in the mtDNA reference sequences from various species (12) was compared. The aim of the study was to determine the localization of CpG sites and islands in mtDNA of model organisms and to compare their distribution. The results are suitable for further investigations of mtDNA methylation. The analysis involved both strands of mtDNA sequences of animal model organisms representing different taxonomic groups of invertebrates and vertebrates. For each sequence, such parameters as the number, length, and localization of CpG islands were determined with the use of EMBOSS (European Molecular Biology Open Software Suite) software. The number of CpG sites for each sequence wabrates.Limitations in wound management have prompted scientists to introduce bioprinting techniques for creating constructs that can address clinical problems. The bioprinting approach is renowned for its ability to spatially control the three-dimensional (3D) placement of cells, molecules, and biomaterials. These features provide new possibilities to enhance homology to native skin and improve functional outcomes. However, for the clinical value, the development of hydrogel bioink with refined printability and bioactive properties is needed. In this study, we combined the outstanding viscoelastic behavior of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate (ALG), carboxymethyl cellulose (CMC), and encapsulated human-derived skin fibroblasts (hSF) to create a bioink for the 3D bioprinting of a dermis layer. The shear thinning behavior of hSF-laden bioink enables construction of 3D scaffolds with high cell density and homogeneous cell distribution. The obtained results demonstrated that hSF-laden bioink supports cellular activity of hSF (up to 29 days) while offering proper printability in a biologically relevant 3D environment, making it a promising tool for skin tissue engineering and drug testing applications.BACKGROUND Tussilagone, a major component of Tussilago farfara L., has anti-angiogenic and anti-inflammatory effects. However, the therapeutic and preventive activity of tussilagone in colitis-associated colon carcinogenesis is unknown. METHODS We intended to investigate the therapeutic effects and the potential mechanism of action underlying the pharmacological activity of tussilagone on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS). We injected BALB/c mice with AOM and administered 2% DSS in drinking water. The mice were given tussilagone (2.5 and 5 mg/kg body weight) and colon tissues was collected at 72 days. We used Western blotting, immunohistochemistry and real-time RT-PCR analyses to examine the tumorigenesis and inflammatory status of the colon. RESULTS Tussilagone administration significantly reduced the formation of colonic tumors. In addition, tussilagone treatment markedly reduced the inflammatory mediators and increased heme oxygease-1 in protein and mRNA levels in colon tissues. Meanwhile, nuclear NF-κB-positive cells were elevated and nuclear Nrf2-positive cells were demised by tussilagone treatment in colon tissues. Tussilagone also reduced cell proliferation, induced apoptosis and decreased the β-catenin expression. CONCLUSIONS Tussilagone administration decreases the inflammation and proliferation induced by AOM/DSS and induced apoptosis in colon tissue. Overall, this study indicates the potential value of tussilagone in suppressing colon tumorigenesis.Time and temperature, besides pressure in a lesser extent, represent the most significant variables influencing the rheological behavior of viscoelastic materials. These magnitudes are each other related through the well-known Time-Temperature Superposition (TTS) principle, which allows the master curve referred to relaxation (or creep) behavior to be derived as a material characteristic. In this work, a novel conversion law to interrelate relaxation curves at different temperatures is proposed by assuming they to be represented by statistical cumulative distribution functions of the normal or Gumbel family. The first alternative responds to physical considerations while the latter implies the fulfillment of extreme value conditions. Both distributions are used to illustrate the suitability of the model when applied to reliable derivation of the master curve of Polyvinil-Butyral (PVB) from data of experimental programs. The new approach allows not only the TTS shift factors to be estimated by a unique step, but the whole family of viscoelastic master curves to be determined for the material at any temperature. This represents a significant advance in the characterization of viscoelastic materials and, consequently, in the application of the TTS principle to practical design of viscoelastic components.
My Website:
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team