Notes
Notes - notes.io |
Although stretching is recommended for fitness and health, there is little research on the effects of different stretching routines on hemodynamic responses of senior adults. It is not clear whether stretching can be considered an aerobic exercise stimulus or may be contraindicated for the elderly. The purpose of this study was to compare the effect of three stretching techniques; contract/relax proprioceptive neuromuscular facilitation (PNF), passive straight-leg raise (SLR), and static sit-and-reach (SR) on heart rate (HR) and blood pressure (BP) in senior athletes (119 participants 65.6 ± 7.6 yrs.). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and HR measurements were taken at baseline (after 5-minutes in a supine position), 45 and 90-seconds, during the stretch, and 2-minutes after stretching. Within each stretching group, (SLR, PNF, and SR) DBP, MAP and HR at pre-test and 2-min post-stretch were lower than at 45-s and 90-s during the stretch. SLR induced smaller increases in DBP and MAP than PNF and SR, whereas PNF elicited lower HR responses than SR. In conclusion, trained senior adult athletes experienced small to moderate magnitude increases of hemodynamic responses with SLR, SR and PNF stretching, which recovered to baseline values within 2-min after stretching. Furthermore, the passive SLR induced smaller increases in BP than PNF and SR, while PNF elicited lower HR responses than SR. These increases in hemodynamic responses (HR and BP) were not of a magnitude to be clinically significant, provide an aerobic exercise stimulus or warrant concerns for most senior athletes.It is unclear if the Functional Movement Screen (FMS) scoring criteria identify kinematics that have been associated with lower extremity injury risk. The purpose was to compare lower extremity kinematics of the overhead deep squat (OHDS) during the FMS between individuals who were grouped on FMS scoring. Forty-five adults who were free of injury and without knowledge of the FMS or its scoring criteria (males = 19, females = 26; height = 1.68 0.08 m; mass = 70.7 7 13.0 kg). Three-dimensional lower extremity kinematics during an OHDS were measured using a motion capture system. One-way MANOVA was used to compare kinematic outcomes (peak hip flexion angle, hip adduction angle, knee flexion angle, knee abduction angle, knee internal rotation angle, and ankle dorsiflexion angle) between FMS groups. Those who scored a 3 had greater peak hip flexion angle (F2,42 = 8.75; p = 0.001), knee flexion angle (F2,42 = 13.53; p = 0.001), knee internal rotation angle (F2,42 = 12.91; p = 0.001), and dorsiflexion angle (F2,42 = 9.00; p = 0.001) compared to those who scored a 2 or a 1. However, no differences were found in any outcome between those who scored a 2 and those who scored a 1, or in frontal plane hip or knee kinematics. FMS scoring for the OHDS identified differences in squat depth, which was characterized by larger peak hip, knee, and dorsi- flexion angles in those who scored a 3 compared with those who scored 2 or 1. However, no differences were found between those who scored a 2 or 1, and caution is recommended when interpreting these scores. Despite a different FMS score, few differences were observed in frontal or transverse plane hip and knee kinematics, and other tasks may be needed to assess frontal plane kinematics.Soccer referees represent a specialized population who are required to perform decisional or perceptual tasks during physical exertion. Recent studies have demonstrated that submaximal acute exercise has a positive impact on cognitive performance. However, less is known about the impact of more strenuous exertion on cognitive performance. This study assessed the effect of moderate and maximal intensity exercise exertion on a cognitive performance in sub-elite soccer referees. Twelve experienced soccer referees (4 female, 8 male) were recruited. Data were collected on 2 separate days. Baseline fitness level was assessed by a standardized aerobic capacity test (VO2max Test) on Day 1, along with practice trials of the Stroop Color Word Test (Stroop Test) for evaluating cognitive performance. On Day 2, cognitive performance was assessed before, during, and after an incremental intensity exercise protocol based on the Fédération International de Football Association (FIFA) referee fitness test. Relative to results obtained at rest performance on the Stroop Test improved at moderate exertion and at maximal exertion during the modified FIFA fitness test (F = 18.97, p = .005). Mean time to completion (in seconds) of the interference Stroop task significantly improved (p less then .05) between rest and moderate exertion [-3.0 ± 3.0 seconds] and between rest and maximal exertion [-4.8 ± 2.6 seconds]. In summary, we observed that cognitive performance was found to improve when sub-elite soccer referees performed moderate and maximal exercise relative to results obtained at rest. It is possible that referees focus their attention to improve goal-oriented processing in the brain during physical exertion.The study aimed to provide within-race data on the time course of pulmonary function during a mountain ultramarathon (MUM). Additionally, we wanted to assess possible sex differences regarding pre- to post-race change in pulmonary and inspiratory muscle function. Lastly, we were interested in evaluating whether changes in respiratory function were associated with relative running speed and due to general or specific fatigue. 47 athletes (29 males and 18 females; 41 ± 5 years) were submitted to a cardiopulmonary exercise test (CPET) before a 107-km MUM. Spirometric variables forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC and peak expiratory flow (PEF); maximal inspiratory pressure (MIP); squat jump (SJ) and handgrip strength (HG) were assessed before and after the race. Additionally PEF was measured at three aid stations (33rd, 66th and 84th km) during the race. PEF declined from the 33rd to the 66th km (p = 0.004; d = 0.72) and from the 84th km to the finish line (p = 0.003; d = 0.90), while relative running speed dropped from the first (0-33 km) to the second (33-66 km) race section (p less then 0.001; d = 1.81) and from the third (66-84 km) to the last race section (p less then 0.001; d = 1.61). Post-race, a moderate reduction was noted in FVC (-13%; p less then 0.001; d = 0.52), FEV1 (-19.5%; p less then 0.001; d = 0.65), FEV1/FVC (-8.4%; p = 0.030; d = 0.59), PEF (-20.3%; p less then 0.001; d = 0.58), MIP (-25.3%; p less then 0.001; d = 0.79) and SJ (-31.6%; p less then 0.001; d = 1.42). Conversely, HG did not change from pre- to post-race (-1.4%; p = 0.56; d = 0.05). PEF declined during the race in parallel with running speed drop. No sex differences were noted regarding post-race respiratory function, except that FEV1/FVC decay was significantly greater among women. The magnitude of pre- to post-race respiratory function decline was uncorrelated with relative running speed.Trunk motion is most likely to influence knee joint injury risk, but little is known about sex-related differences in trunk neuromuscular control during changes of direction. The purpose of the present study was to test whether differences in trunk control between males and females during changes of direction exist. Twelve female and 12 male recreational athletes (with at least 10 years of experience in team sport) performed unanticipated changes of direction with 30° and 60° cut angles, while 3D trunk and leg kinematics, ground reaction forces and trunk muscles electromyography were recorded. Trunk kinematics at the time of peak knee abduction moment and directed co-contraction ratios for trunk muscles during the pre-activation and weight acceptance phases were determined. None of the trunk kinematics and co-contraction ratio variables, nor peak knee abduction moment differed between sexes. Compared to the 30° cut, trunk lateral flexion remained unchanged and trunk external rotation was reduced (p 0.46). However, muscle co-contraction during the weight acceptance phase remained comparable between 30° and 60°. The lack of sex-related differences in trunk control does not explain knee joint injury risk discrepancies between sexes during changes of direction. Trunk neuromuscular strategies during sharper cutting angles revealed the importance of external oblique muscles to maintain trunk lateral flexion at the expense of trunk rotation. This provides new information for trunk strength training purposes for athletes performing changes of direction.The prevalence of inter-limb strength differences is well documented in the literature however, there are inconsistencies related to measurement and reporting, and the normative values and effects associated with inter-limb asymmetry. Therefore, the aims of this systematic review were to 1) assess the appropriateness of existing indices for the calculation of asymmetry, 2) interrogate the evidence basis for literature reported thresholds used to define asymmetry and 3) summarise normative levels of inter-limb strength asymmetry and their effects on injury and performance. To conduct this systematic review, scientific databases (PubMed, Scopus, SPORTDiscus and Web of Science) were searched and a total of 3,594 articles were retrieved and assessed for eligibility and article quality. The robustness of each identified asymmetry index was assessed, and the evidence-basis of the identified asymmetry thresholds was appraised retrospectively using the references provided. Fifty-three articles were included in this rto establish appropriate thresholds across various samples and methodologies that enable appropriate conclusions to be drawn.The present study investigated the effects of a combined hot and hypoxic environment on muscle oxygenation during repeated 15-s maximal cycling sprints. In a single-blind, cross-over study, nine trained sprinters performed three 15-s maximal cycling sprints interspersed with 7-min passive recovery in normoxic (NOR; 23℃, 50%, FiO2 20.9%), normobaric hypoxic (HYP; 23℃, FiO2 14.5%), and hot normobaric hypoxic (HH; 35℃, FiO2 14.5%) environments. Relative humidity was set to 50% in all trials. The vastus lateralis muscle oxygenation was evaluated during exercise using near-infrared spectroscopy. The oxygen uptake (VO2) and arterial oxygen saturation (SpO2) were also monitored. There was no significant difference in peak or mean power output among the three conditions. The reduction in tissue saturation index was significantly greater in the HH (-17.0 ± 2.7%) than in the HYP (-10.4 ± 2.8%) condition during the second sprint (p less then 0.05). The average VO2 and SpO2 were significantly lower in the HYP (VO2 = 980 ± 52 mL/min, SpO2 = 82.9 ± 0.8%) and HH (VO2 = 965 ± 42 mL/min, SpO2 = 83.2 ± 1.2%) than in the NOR (VO2 = 1149 ± 40 mL/min, SpO2 = 90.6 ± 1.4%; p less then 0.05) condition. Pexidartinib cell line In conclusion, muscle oxygen saturation was reduced to a greater extent in the HH than in the HYP condition during the second bout of three 15-s maximal cycling sprints, despite the equivalent hypoxic stress between HH and HYP.Many studies observed a reduction of physical activity (PA) and an increase in digital media use in young adults during the COVID-19 pandemic. However, few studies have been conducted in Europe or looked at changes in the association between both behaviors. Hence, this study aims at investigating the changes in digital media use/social media use and PA as well as in its association among young adults in Germany. Cross-sectional data of 884 German young adults (mean age 22.36 (±1.99), 76% female) collected via an online questionnaire between August 1 and September 30, 2020 were analyzed. Participants reported on digital media use (smartphone, television, computer, gaming console), social media use (Facebook, Instagram, Snapchat, Twitter, YouTube, TikTok) and PA (days/week of ≥30 min. PA) separately for the period of strict infection control measures in Germany (March - end of May 2020) and for normal times (before March 2020). Descriptive statistics of digital media use, social media use and PA were compared between both periods.
Read More: https://www.selleckchem.com/products/pexidartinib-plx3397.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team